
1

Object oriented Programming
in High Energy Physics

Eckhard von Toerne
University of Bonn

Advanced Methods of Software Programming

Lecture 1

Helmholtz Workshop

27. Sep. 2010

2

Contents
• Introduction: Ingredients of Object Oriented Programming

– Concepts of object orientation

– HEP experiment analysis code case study

– What is an electron object

• What are Design patterns?

• C++ features and issues

Eckhard von Toerne, University of
B

3

C++ in HEP
Example: ATLAS Experiment

• proton-proton collision at up to
14 TeV Ecm.

• Size: ~22 x 22 x 44 meter3

• Bunch crossings every 25 ns,
• Event size ~2 MB
• Several thousand particles

expected to be created in every
collision 0.1 Peta-byte/ sec data
source awaiting direct analysis,

• Stored on tape ~200 events / sec.
~ 1 GB/sec

Eckhard von Toerne, University of
B

4

ATLAS and its software

Weight ~7000 tonnes
Humorous sidenote:

If written in stone…
30 lines of code per stone slab
and 5kg per slab

~200 tonnes

ATLAS Detector ATLAS Source Code
~1 Mio lines of code

Asges
Sfsghd

Sgdsx
……

Asges
Sfsghd

Sgdsx
……

Asges
Sfsghd

Sgdsx
……

Asges
Sfsghd

Sgdsx
……

Asges
Sfsghd

Sgdsx
……

Eckhard von Toerne, University of
B

5

Concepts of Object Orientation
• Most software concepts only beneficiary

if problem is complex enough
• Must discuss complex example

Concepts:
–Classes
–Encapsulation
–Inheritance
–Polymorphism
–Templates

6

Why we need object orientation

Last Century Source Code
„The ancient language department is still

refusing to teach Fortran77“
Next: Tour through reconstruction code of

OPAL experiment (early 90ies)

We need object oriented code to tackle the
complex problems that are the focus of
science in the 21st century

Object oriented languages (Java, Python,
C++, Fortran90,...)

Eckhard von Törne

7

Framework
Initialization of processors/services, Loading of Libraries

Processor 1 Database
Service

(Detector
Description,
Alignment,

Beam
Conditions,

….)

Transient
Data
Store

User input
via
text
Files

Processor 2

Processor 3

Our User Processor

Processor 5
Histogram

Service

Other
Services..

Processor ...

Histogram files
(User)

Data Input files

DataOutput file
(User)

Example Analysis Framework
of HEP experiment

8

• Elements of analysis framework described in classes
• Packaging data and functions together

Framework
Initialization of processors/services, Loading of Libraries

Processor 1 Database
Service

(Detector
Description,
Alignment,

Beam
Conditions,

….)

Transient
Data
Store

User input
via
text
Files

Processor 2

Processor 3

Our User Processor

Processor 5
Histogram

Service

Other
Services..

Processor ...

Histogram files
(User)

Data Input files

DataOutput file
(User)

Classes

9

• Framework does not know about processors
• Storegate does not know about Datatypes
• Acces to data is restricted (private functions)

Framework
Initialization of processors/services, Loading of Libraries

Processor 1 Database
Service

(Detector
Description,
Alignment,

Beam
Conditions,

….)

Transient
Data
Store

User input
via
text
Files

Processor 2

Processor 3

Our User Processor

Processor 5
Histogram

Service

Other
Services..

Processor ...

Histogram files
(User)

Data Input files

DataOutput file
(User)

Encapsulation

10

• Processors are derived from common base class
• Functions common to all processors are only defined once

• Data classes are derived from DataObject interface

Framework
Initialization of processors/services, Loading of Libraries

Processor 1 Database
Service

(Detector
Description,
Alignment,

Beam
Conditions,

….)

Transient
Data
Store

User input
via
text
Files

Processor 2

Processor 3

Our User Processor

Processor 5
Histogram

Service

Other
Services..

Processor ...

Histogram files
(User)

Data Input files

DataOutput file
(User)

Inheritance

11

What is Inheritance
Inheritance is a method of including data and functions of
one class into another class.
Syntax:
Class Daughter : public Mother {
…

}

Inheritance is either public (most common), private or protected
(Careful: Without specifying the inheritance type: private is chosen)

Private Inherit. Public Inherit.
private data unusable unusable
public data usable / private public

protected data usable / private protected

12

• Transient Data Store does not know about individual data
classes. Storage class handles Base class pointers

• Polymorphism: Base class pointer accepts derived classes

Framework
Initialization of processors/services, Loading of Libraries

Processor 1 Database
Service

(Detector
Description,
Alignment,

Beam
Conditions,

….)

Transient
Data
Store

User input
via
text
Files

Processor 2

Processor 3

Our User Processor

Processor 5
Histogram

Service

Other
Services..

Processor ...

Histogram files
(User)

Data Input files

DataOutput file
(User)

Polymorphism

13

Polymorphism
Polymorphism: Way to treat objects which belong to different

classes in a similar way. Derive classes from base class
Define common functionality in base class
class Vehicle{ ..
Print();
.. }; // base class
class Car: public Vehicle { }; // derived class Car

vector <Vehicle*> vehicleList;
vehicleList.push_back(new Car(“Ford“,“Fiesta“));
vehicleList.push_back(new Truck(“EightWheel“,“MyTruck“));
For (int i=0; i<vehicleList.size();i++) vehicleList[0]->Print();

Which Print() is executed? Normal case: Vehicle::Print();

Derived class‘ Print() may be used by applying virtual functions

14

• Templates are discussed in exercise

Framework
Initialization of processors/services, Loading of Libraries

Processor 1 Database
Service

(Detector
Description,
Alignment,

Beam
Conditions,

….)

Transient
Data
Store

User input
via
text
Files

Processor 2

Processor 3

Our User Processor

Processor 5
Histogram

Service

Other
Services..

Processor ...

Histogram files
(User)

Data Input files

DataOutput file
(User)

Templates

15

OO Concepts and code efficiency

Why copy-and-paste is “evil“

Concepts of Object Orientation designed
to avoid blow-up of code

• Classes (“packaging data and
functions together“)

• Encapsulation (“shielding your code“)
• Inheritance (“code common to several

classes defined in base class “)
• Polymorphism (“classes are handled via interfaces“)
• Templates (“ultimate copy-and-paste killer“)

16

Language support of OO features

Feature C++ Java Python

Classes ok ok ok

Encapsulation ok ok ok

Inheritance ok ok ok

Polymorphism ok ok ok

Templates ok ok ok
• C++ used by all LHC experiments, B-Fac. and ILC
• No experiment uses C++ exclusively
• Will concentrate on C++ but all examples

translatable into other languages (C++, Java,
Python, Ruby, ….)

17

Code navigation exercise I
http://alxr.usatlas.bnl.gov/lxr-stb4/source/atlas/Reconstruction/egamma/egammaPIDTools/src/egammaElectronCutIDTool.cxx

declareProperty:
Inherited function from Processor Base Class

service:
Inherited function from Processor Base Class

Usage of Preprocessor macro for log messages

Eckhard von Toerne, University of
B

18

Electron C++ object

Creation of a delta electron
in ATLAS Cosmics data
(Approved Plot, J.Kraus)

cosmic muon

electron
track

EM cluster

Signature of electron in detector:
• Calo Cluster consistent with e/γ hyp.
• track pointing to cluster
• # high threshold TRT hits on track

consistent with e- hyp.
• E/p ~1

What is an electron object?
• “pointer“ to a cluster
• “pointer“ to a track
• “pointer“ to a γ ee conversion object, if any
• functions:

– GetCluster()
– GetTrack()
– GetEOverP()

Eckhard von Toerne, University of
B

19

Electron class source code
atlas/Reconstruction/egamma/egammaEvent/egammaEvent/Electron.h and egamma.h

declareProperty:
Inherited function from Processor Base Class

service:
Inherited function from Processor Base Class

Usage of Preprocessor macro for log messages

…

Eckhard von Toerne, University of
B

20

Design Pattern

Eckhard von Toerne, University of
B

21

Design Patterns

Design pattern pioneered in architecture:
recurring solution to design problems
Introduced by architect C. Alexander, “A Pattern Language:
Towns, Buildings, Construction. Oxford University Press (1977).

In the 90ies adapted to computer science
Design Pattern Categories
• Creational Patterns
• Structural Patterns
• Behavioral Patterns
expressed in a diagrammatic language (see S.
Kluth‘s lecture tomorrow)

Eckhard von Toerne, University of
B

22

Computer Literature
• “Gang Of Four“ book:

“Design Patterns, elements of reusable
object-oriented software“
E. Gamma et al., Addison-Wesley 1995
Description of ~30 patterns in computing,
applications + structure + diagramatic description

• F. Buschmann et al., “Pattern oriented
software architecture“, Wiley 1996
(contains blackboard pattern)

Eckhard von Toerne, University of
B

23

Review of C++
Features

and other Issues

Eckhard von Toerne, University of
B

24

A class definition

25

A class definition

Forward declaration of function, no body, has semicolon

Complete declaration of function

}Function Body enclosed by { }, no semicolon

Init List, in which other constructors are called, might be empty

A constant which is common to all objects of this class thus „static“

Data, convention used here: all class data start with f…

Everything behind this is public: visible from outside

constructor

destructor

Argument list enclosed by ()Function nameType

Empty argument list

Class name List of inheritance, might be empty

Everything behind this is private: invisible from outside

class body starts here, enclosed by { }

26

Bugs Top-10 list
(C++)

Bonn, 22. Oktober 2007 Eckhard von Törne

27

double d = GetValue();
double* poi = &d;
int* poi2 = (int*) poi;

Worst Bugs top-10 list
#10 bad usage of char*

#9 errors in an if-clause bool statement

#8 wrong cast of an object

#7 STL-containers with a faulty less-operator

#6 accessing an array out of its boundaries

char* name=“HAL“;
char* input[20];
cin >>input;
if (input == name) cout << “Good Morning“ << endl;

int a,b;
if (a = b || a =!3) { ...

Set < Pair<int>, MyLess > s;
Bool MyLess(const Pair<int>& p1, const Pair<int>& p2){
return (p1.first < p2.first && p1.second < p2.second;}

aclass a[4];
aclass* ap = a[3];
ap++; ap->Print();

28

Worst Bugs top-10 list
#5 overwriting a class variable with a local variable

#4 deleting a pointer which is used elsewhere

#3 a pointer to a stack object as a function return value

#2 using uninitialized class data

#1 the bug no-one has thought of yet

class aclass {
double fDat, fDat2;
SetDat(int i){ double fDat = i; }
};

aclass* ap = &a[2];
checkPointer(ap);
ap->Print();

void checkPointer(aclass* ap){
delete ap;
return;}

class aclass {
double fDat, fDat2;
aclass(){ double fDat = 0.; }
};

aclass* GetAclass(int i){
aclass a;
a.SetDat(i);
return &a;}

29

End of Lecture 1

Eckhard von Toerne, University of
B

30

BACKUP

Bonn, 22. Oktober 2007 Eckhard von Törne

