2 UML for OOAD

2.1 What is UML?

2.2 Classes in UML

2.3 Relations in UML

2.4 Static and Dynamic Design with UML

UML for OOAD Stefan Kluth

2.1 UML Background

“The Unified Modelling Language (UML) is a graphical
language for visualizing, specifying, constructing, and
documenting the artifacts of a software-intensive system.

The UML offers a standard way to write a systems blueprints,
including conceptual things like business processes

and system functions as well as concrete things such as
programming language statements, database schemas, and
reusable software components.”

Grady Booch, Ivar Jacobsen, Jim Rumbaugh
Rational Software Corp.

[The Unified Modelling Language User Guide, Addison-Wesley 2003]

UML for OOAD Stefan Kluth

2.1 Briet UML History

e Around 1980

- first OO modelling languages
- other techniques, e.g. SA/SD

 Around 1990
- “O0 method wars”

- many modelling languages
 End of 90's

- UML appears as combination of best practices

UML for OOAD Stefan Kluth

2.1 Why UML?

* Physicists know formal graphical
modelling

— Mathematics to describe nature

- Feynman graphs to calculate amplitudes
* We need a common language

- discuss software at a black- (white-) board
- Document software systems
- UML is an important part of that language

- UML provides the “words and grammar”

UML for OOAD Stefan Kluth

2.2 Classes in UML

* Classes describe objects

- Interface (member function signature)
- Behaviour (member function implementation)
- State bookkeeping (values of data members)

- Creation and destruction
* Objects described by classes collaborate

— Class relations = object relations

- Dependencies between classes

UML for OOAD Stefan Kluth

2.2 UML Class

Class name

7

name
Data members |[~*: double
—» |-y: double
—z: double
—n: int
Instance methods|tname ()
— 3 |tmethodl (:double) : double
+tmethod2 () 4 bool \
___— tclassMethdd () \
Class method Return types
Arguments

Data members, arguments and methods are specified by
visibility name : type

UML for OOAD Stefan Kluth

2.2 Class Name

The top compartment
contains the class name

> «interfacey

Abstract classes have italicised AbstractClass
/ rmethod ()

names

Abstract methods also have /
italicised names

«stereotype»
L Nam
Stereotypes are used to 1dent1fy/ ame
, —dataMember: type
groups of classes, e.g. interfaces tmethod O

or persistent (storeable) classes

UML for OOAD Stefan Kluth

2.2 Class Attributes

Attributes are the instance
and class data members

Class data members (underlined) Attribute
are shared between all instances compartmlent
(objects) of a given class

Name f
é;;:§>‘k—instanceDataMember: typel

—classDataMember: type

Data types shown a

+Name ()
Visibility shown as tName (:Name)
. +operation ()
+ public
- private

protected

visibility name : type

UML for OOAD Stefan Kluth 8

2.2 Class Operations (Interface)

Operations are the class
methods with their argument
and return types

Public (+) operations define the
class interface

Class methods (underlined)

Name
—instanceDataMember: type
—classDataMember: tvype
+Name ()
+Name (: Name)
+instanceMethod ()
+classMethod () T

have only access to class data /

members, no need for a class
instance (object)

Operations
compartment

visibility name : type

UML for OOAD Stefan Kluth

2.2 Visibility
+ - #
public private protected

Anyone can access No-one can access Subclasses can access

Interface operations Data members Operations where sub-
classes collaborate
Not data members Helper functions
Not data members
“Friends” are allowd (creates dependency
in though of subclass on im-
plementation of parent)

UML for OOAD Stefan Kluth 10

2.2 Template Classes

Generic classes depending on parametrised types

r==ms— Type parameter(s)

. .

vector
tsize(): size_t ,
+push_back (:T) N Operations compartment
+operator[] (:size t): T as usual, but may have

type parameter instead of
concrete type

UML for OOAD Stefan Kluth 11

2.3 Relations

» Association

 Aggregation
 Composition

 Parametric and Friendship

e Inheritance

UML for OOAD Stefan Kluth

12

2.3 Binary Association

A B
-myB: B* -myA: A*
+doSomething() +operation()

: +service()

*
*
l" 4*
L L

#include "B.hh"; #include "A.hh";

vold A::doSomething() { void B::operation() {
ﬁ;é-}service{}; ﬁ}ﬁ-}doSomething{};

} C) C

Usually “knows about” means a pointer or reference
Other methods possible: method argument, tables, database, ...

Implies dependency cycle

UML for OOAD Stefan Kluth

13

2.3 Unary Association

A knows about B, but B knows nothing about A

A

-myB: B*

+doSomething()

> B

R\\\Tservice()

Arrow shows direction of

#include "B.hh";

void A::doSomething() {

myB->service();

A association in direction of

dependency

UML for OOAD Stefan Kluth

14

2.3 Aggregation

Aggregation = Association with “whole-part” relationship

Crate € >{ Module
-aModule: Module* +service()
+doSomething()

Shown by hollow diamond
at the "whole" side

#include "Module.hh";

void Crate::doSomething() { No lifetime control implied

aModule->service();

UML for OOAD Stefan Kluth 15

2.3 Composition

Composition = Aggregation with lifetime control

Particle ¢ > FourVector
-momentum: FourVector +magSquared(): double
+mInv(): double

Shown by filled diamond
at the “owner” side

AN
double Particle::mInv() {

double minv2= momentum.magSquared(); Lifetime control 1mphed
return minv2<0?-sqrt(-minv2):sqrt(minv2);

}

Lifetime control: construction and

destruction controlled by “owner”

- call constructors and destructors
(or have somebody else do it)

Lifetime control can be
tranferred

UML for OOAD Stefan Kluth 16

2.3 Association Details

Name gives details of association
Name can be viewed as verb of a sentence

+Master
1

Uses»

A
-myB: vector<B*>

+A()
+operation()

+Slave
1..%

+B()
+servicemethod()

Notes at association ends Multiplicities show number of
explain “roles” of classes (objects) objects which participate in the
association

UML for OOAD Stefan Kluth 17

2.3 Friendship

Friends are granted access to private data members and

member functions
Friendship is given to other classes, never taken

A < friend B
-myC: C* +B()
A () +service(a:A&)
+operation() 3

N ' N

class A { #include "A.hh"
friend class B; void B::service(A& a) {
e aC= a.myC;
¥ delete aC;
a.myC= 0;
Bob Martin: }

More like lovers than friends.
You can have many friends,
you should not have many lovers

Friendship breaks data hiding, use carefully

UML for OOAD Stefan Kluth 18

2.3 Parametric Association

Association mediated by a parameter (function call argument)

A

<<parameter>>

+doSomething(const B &)

#include "B.hh";

b.operation();

}

void A::doSomething(const B & b) {

™

A depends upon B, because it uses B

No data member of type B in A

>

+operation()

UML for OOAD Stefan Kluth

19

2.3 Inheritance

A

-myX: double

+setX(double)
+getX(): double

¥—— Base class or super class

JAN
- Arrow shows direction
— of dependency
B
Toperation() ¥ Derived class or subclass

- B inherits A's interface,
: behaviour and data members
#include "A.hh": A > B can extend A, i.e. add new
data members or member functions
o - B depends on A,
} A knows nothing about B

class B : public A {

UML for OOAD Stefan Kluth 20

2.3 Associations Summary

« Can express different kinds of associations
between classes/objects with UML

- Association, aggregation, composition,
inheritance

- Friendship, parametric association

* Can go from simple sketches to more
detailed design by adding adornments

- Name, roles, multiplicities

— lifetime control

UML for OOAD Stefan Kluth

21

2.3 Multiple Inheritance

<<inte‘;facc=->> Countable The derived class inherits
. _nObjects: int interface, behaviour and
+doSomething() +Countable() .
A +~Countable() data members of all its
+getNumObjs(): int base classes
Extension and overriding
B works as before
+B()
+~B() | B implements the interface A and
+doSomething()

1S also a “countable” class

Countable also called a "Mixin class”

UML for OOAD Stefan Kluth 22

2.3 Deadly Diamond of Death

(A C++ feature)

TObject
<<interface>> Countable
A -nObjects: int
+doSomething () +Countable()
A +~Countable()

+getNumObjs(): int

JAN
B
+B()
+~B ()
+doSomething()

Now the @*#! hits the %&$?

Data members of TObject are
inherited twice in B, which ones
are valid?

Fortunately, there is a solution

to this problem:

- virtual inheritance in C++:
only one copy of a multiply
inherited structure will
be created

UML for OOAD

Stefan Kluth

23

2.4 Static and Dynamic Design

e Static design describes code structure and
object relations

— Class relations

- Objects at a given time

 Dynamic design shows communication
between objects

- Similarity to class relations

- can follow sequences of events

UML for OOAD Stefan Kluth

24

2.4 Class Diagram

e Show static relations between classes

- we have seen them already
- interfaces, data members

— associations

 Subdivide into diagrams for specific
purpose
- showing all classes usually too much
- ok to show only relevant class members

- set of all diagrams should describe system

UML for OOAD Stefan Kluth

25

2.4 Object Diagram

Particle |‘

-mom: FourVector
-parent: Particle*
-daughters: list<Particle*>

e

>

FourVector

+mInv()

DO:Particle k

2

~>| mom:FourVector

:Particle k—%

mom:FourVector

V1

D*:Particle H

mom:FourVector

Class diagram
never changes

Object diagram shows
relations at instant in time
(snapshot)

Object relations are drawn
using the class association
lines

UML for OOAD Stefan Kluth

26

2.4 Sequence Diagram

Show sequence of events for a particular use case

Active object Object

‘ :Modem

|
[Lifeline

Activation

User connect 44000_

| |
|
Messages | \

half-arrow=asynchronous,
full arrow=synchronous, dashed=return

UML for OOAD Stefan Kluth 27

2.4 Sequence Diagram

Can show creation and

destruction of objects

UML for OOAD Stefan Kluth 28

You:User

‘}\D‘K/ ! ect
!

2.4 Sequence Diagram

Telekom:SP Auntie:User

—dial12345) o | :

off hook—"

Hallo? L_
I

Slanted messages take
some time

Can model real-time
systems

UML for OOAD

Stefan Kluth

29

You:User
|

2.4 Sequence Diagram

Telekom:SP Auntie:User

|

rin

. digl tone- -

% off hook

' off hook '

1

r

connect—1 \Gonne&._
el

Crossing message lines
are a bad sign

- race conditions

UML for OOAD

Stefan Kluth

30

2.4 Collaboration Diagram

4: Hello?
4——

You:User Auntie:User

\1: off hook
/1 ring

N.l: dial tone
\2: dial /2 1.1: off hook
\3; connect A connect

Object diagram with

numbered messages

Telekom:SP

Sequence numbers of messages
are nested by procedure call

UML for OOAD Stefan Kluth 31

2.4 Static and Dynamic Design

Summary
e Class diagrams = object diagrams

- classes = objects; associations = links
 Dynamic models show how system works
- Sequence and collaboration diagram
* There are tools for this process
- UML syntax and consistency checks
* Sketches by hand or with simple tools

- aid in design discussions

UML for OOAD Stefan Kluth

32

Some Comments
* Design-heavy development processes

- several 10% of person-power/time spent on
design with formal UML from requirements

- start coding when the design is consistent

- large software houses may work this way
* Lighter processes

- a few % of person-power/time spent with UML
— UML as a discussion and documentation aid

- probably more adequate in HEP

UML for OOAD Stefan Kluth

33

	title
	umlbkg
	umlhist
	why
	umlbits
	umlcls
	clsname
	clsatt
	claop
	clsvis
	templ
	clsrel
	clsass
	clsunass
	aggr
	cmpo
	assdet
	friend
	parass
	assinh
	asssum
	multinh
	ddd
	sdd
	clsdia
	objdia
	seqdia
	seqdes
	seqtel
	seqtel2
	colla
	sddsum
	comment

