
1

Design Patterns I
Factory and Composite

Eckhard von Toerne
U. of Bonn

Advanced Methods of Software Programming

Lecture 3

Helmholtz Workshop

27. Sep. 2010

2

Design Patterns

Design pattern pioneered in architecture:
recurring solution to design problems
Introduced by architect C. Alexander, “A Pattern Language:
Towns, Buildings, Construction. Oxford University Press (1977).

In the 90ies adapted to computer science
Design Pattern Categories
• Creational Patterns
• Structural Patterns
• Behavioral Patterns
expressed in a diagrammatic language (see S.
Kluth‘s lecture earlier today)

Eckhard von Toerne

3

Summary
Syntax of UML Class Diagrams

Class representation
Class name

Attributes (Data)

Methods

Base class

Derived
class

Generalization
(Inheritance)

Relations among classes
Association

Association
(A knows B)

Composition
(B integral part of A)

Aggregation
(B part of A)

A class B class

A class B class

A class B class

Instantiation
(A creates B)

A class B class

4

Summary
Syntax of UML Class Diagrams

Class representation
Class name

Attributes (Data)

Methods

Base class

Derived
class

Generalization
(Inheritance)

Relations among classes
Association

Association
(A knows B)

Composition
(B integral part of A)

Aggregation
(B part of A)

A class B class

A class B class

A class B class

Instantiation
(A creates B)

A class B class

In Summary:
•1 type of boxes,
•5 types of
arrows

5

Design Pattern
Factory

Eckhard von Toerne

6

Motivation for Factory
Pattern

How is an object
stored in a file and
read from a file?

Eckhard von Toerne

7

Electron C++ object

Creation of a delta electron
in ATLAS Cosmics data
(Approved Plot, J.Kraus)

cosmic muon

electron
track

EM cluster

Signature of electron in detector:
• Calo Cluster consistent with e/γ hyp.
• track pointing to cluster
• # high threshold TRT hits on track

consistent with e- hyp.
• E/p ~1

What is an electron object?
• “pointer“ to a cluster
• “pointer“ to a track
• “pointer“ to a γ ee conversion object, if any
• functions:

– GetCluster()
– GetTrack()
– GetEOverP()

Eckhard von Toerne

8

Writing objects to file
Break down objects into writeable pieces:
• int, float, string,
• arrays/vectors of writeable types
• Non-trivial: how to write pointers to

objects
address of objects is dynamic,
will be invalid when read

Usual procedure for writing pointers:
• each object gets unique ID
• write unique ID instead of pointer

• Basic problem here: how to decide if an
object is no longer needed (persistency
problem)

garbage collector

class Electron {
Cluster* fCluster;
Track* fTrack
Int fUniqueID
} ;

Electron::Write(ostream out)
{

out << fUniqueID;
out << fCluster->GetUniqueID();
out << fTrack->GetUniqueID()
} ;

Eckhard von Toerne

9

Reading objects from file

• Reading of basic objects: trivial

• Reading of pointers: convert ID back into
pointer

• Creation of object usually divided into
– creation of empty object

object type unknown at compilation time,
but known at execution time
inherent problem solved by factory pattern

– read information from file into empty object

• How to synchronize the creation and filling
of objects

• How to avoid empty objects

Side remark: ROOT offers functionality
to store any object in ROOT files

class Electron {
Cluster* fCluster;
Track* fTrack
Int fUniqueID
} ;

Electron::Read(istream in){
in >> fUniqueID;
in >>clusterID;
in >> trackID;
// next:
// convert ID into pointers
}

ReadFile(istream in)
{
string typename;
in << typname
BaseObject* obj =

factory.Create(typname)
obj->Read(in);
}

10

--BEGINOFFILE
4
CalorimeterCellCollection
101 3 (UniqueID of collection, Number of entries in collection)
102 214205 44.506 (UniqueID of cell, DetectorID and pulseheight)
103 234756 15.533 (UniqueID, DetectorID and pulseheight)
104 234757 23.003 (UniqueID, DetectorID and pulseheight)

TrackerHitCollection
105 1 (UniqueID, Number of entries in collection)
106 100787 59.284 (UniqueID, DetectorID and pulseheight)

CaloClusterCollection (UniqueID, Number of entries in collection)
107 1
108 2 103 104 (UniqueID, Number of Cells in cluster, list of CaloCell UniqueIDs)

ElectronCollection
109 1 (UniqueID, Number of entries in collection)
110 108 106 (UniqueID, CaloCluster UniqueID, Track Unique ID)
--EndOfFile

Number of objects in file

data object type stored as a string

A Toy Example: Objects stored in a file (in ascii)

Eckhard von Toerne

11

--BEGINOFFILE
4
CalorimeterCellCollection
101 3 (UniqueID of collection, Number of entries in collection)
102 214205 44.506 (UniqueID of cell, DetectorID and pulseheight)
103 234756 15.533 (UniqueID, DetectorID and pulseheight)
104 234757 23.003 (UniqueID, DetectorID and pulseheight)

TrackerHitCollection
105 1 (UniqueID, Number of entries in collection)
106 100787 59.284 (UniqueID, DetectorID and pulseheight)

CaloClusterCollection (UniqueID, Number of entries in collection)
107 1
108 2 103 104 (UniqueID, Number of Cells in cluster, list of CaloCell UniqueIDs)

ElectronCollection
109 1 (UniqueID, Number of entries in collection)
110 108 106 (UniqueID, CaloCluster UniqueID, Track Unique ID)
--EndOfFile

Number of objects in file

data object type stored as a string

A Toy Example: Objects stored in a file (in ascii)

Eckhard von Toerne

12

--BEGINOFFILE
4
CalorimeterCellCollection
101 3 (UniqueID of collection, Number of entries in collection)
102 214205 44.506 (UniqueID of cell, DetectorID and pulseheight)
103 234756 15.533 (UniqueID, DetectorID and pulseheight)
104 234757 23.003 (UniqueID, DetectorID and pulseheight)

TrackerHitCollection
105 1 (UniqueID, Number of entries in collection)
106 100787 59.284 (UniqueID, DetectorID and pulseheight)

CaloClusterCollection (UniqueID, Number of entries in collection)
107 1
108 2 103 104 (UniqueID, Number of Cells in cluster, list of CaloCell UniqueIDs)

ElectronCollection
109 1 (UniqueID, Number of entries in collection)
110 108 106 (UniqueID, CaloCluster UniqueID, Track Unique ID)
--EndOfFile

Number of objects in file

data object type stored as a string

A Toy Example: Objects stored in a file (in ascii)

Eckhard von Toerne

13

Factory Method
Pattern

(Creational pattern)

Eckhard von Toerne

14

UML Diagram

FactoryConcrete Product

Product Base Class
FactoryMethod
Class Diagram

Unified Modeling Language: pictorial language used to model object
oriented software

UML defines multitude of diagram types (see e.g.
http://www.omg.org/spec/UML/2.2/)

In the following: only Class diagrams in a slightly modified version used
(to be compatible with Design Pattern examples)

15

FactoryMethod Diagram

Class Description
Name
Data
Functions

Instantiation relation
A builds B: A - - > B

Inheritance
Relation

FactoryConcrete Product

Product Base Class

UML Class Diagram

Base class

Derived class

16

Factory Method Pattern
Example:

Creator of Data Objects
in Analysis Framework

Eckhard von Toerne

17

The Creator of DataObjects
Reading Objects from a file:
string typname;
in >> typname;
DataObject* dat = fCreator.Create(typname); // Create invokes

// correct constructor for derived DataObject
dat->Read(in);

DataObject* Create(string typname)
{

if (typname == "DICalorimeterHit") {
DICalorimeterHit* poi = new DICalorimeterHit();
return dynamic_cast<DataItem*>(poi);

}
else if (typname == "DIEventNumber") {
DIEventNumber* poi = new DIEventNumber();
return dynamic_cast<DataItem*>(poi);

}
else if (typname == "DITrackerHit") {
DITrackerHit* poi = new DITrackerHit();
return dynamic_cast<DataItem*>(poi);

}
} // Factory design pattern (explicit implementation)

** dynamic_cast <type*>
checks at run type if
conversion is valid and
only then returns a
pointer of said type.

18

Who creates the creator?
A Meta-Solution to create Factory class
Factory class generated at compilation time from all available Data

items, automatically adding any new DataItem classes.
scripts/creator.sh (a bash shell script)

Prints everything up to EOF into
file (append mode)

Prints everything up
to EOF into file

Loop over string list

` command ` inserts
result of a shell command
into the script

19

Factory Method
Pattern

Example:
TMVA Method Factory

Eckhard von Toerne

20

TMVA

Toolkit for MultiVariate Analysis (A. Höcker, P. Speckmayer,
J. Stelzer, J. Therhaag, H. Voss, E.v.Törne)

• ~15 different methods for classification or regression
applications accessible via one Interface (the factory)

• Methods: ANN, BDT, linear classifiers, likelihoods,
support vector machines, …

• Factory: creates methods and builds data sets
• Comparison of Methods in identical framework

21

TMVA

• Comparison of Classification methods
Eckhard von Toerne

22

TMVA factory
TMVA factory (J. Stelzer, A. Höcker)

Source code example:

Implementation follows A.Alexandrescu (Modern
C++ Design),

Factory contains (almost) no references to
individual classes.

Instead method registers itself with a singleton
instance of a method repositorium.

Registration is wrapped in a preprocessor macro.
The neccessary code reduces to:
REGISTER_METHOD(“MyTMVAMethod“)
placed in front of MVA class declaration

23

Composite Pattern
(Structural pattern)

Bonn, 22. Oktober 2007 Eckhard von Törne

24

Composite Class Diagram

CompositeConcrete Item (Leaf)

Component

•Component: abstract class (interface)
•Basic objects: concreate Leaf(s)
•Composite: aggregations of components
•Use Composite::Add to add concrete items or composites

•Will discuss this pattern in detail in the next exercise

Add(Component)

25

Composite Class Diagram

CompositeConcrete Item (Leaf)

Component

Aggregation relation

Components are part
of Composite

Inheritance
Relations

Base class

Add(Component)

•Component: abstract class (interface)
•Basic objects: concreate Leaf(s)
•Composite: aggregations of components
•Use Composite::Add to add concrete items or composites

•Will discuss this pattern in detail in the next exercise

26

TTree and TChain

TChain in ROOT follows not Composite pattern
Problem in maintainability (care necessary when
adding new functions to TTree)
Historical reasons,
problems when trying to chain trees in the same file.

CompositeConcrete Item (Leaf)

Component

TChain

TTree

27

Summary and Conclusion
• Design pattern frequently appear in HEP source

code
• Important to know when using and escpecially

when designing object oriented code
• All examples given are in C++, design patterns

are not language specific

Eckhard von Toerne

28

BACKUP

Bonn, 22. Oktober 2007 Eckhard von Törne

29

HistogramService

How to make the histogram handling more
efficient

- At the moment each histogram is handled
at least in three far-away points in your
code
- Definition
- Filling
- Writing

- Real world example: turn this into a one
point access using a service class

