OBfjéct- Ortentec[Trogmmmmg

in Tﬁysws

1 Introduction

Complex Systems
3 Object Model

4 Dependency Management
5 Class Design E

-“-_

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment

1 What 1is O0O?

* A method to design and build large
programs with a long lifetime

- e.g. O(10k) loc C++ with O(a) lifetime
- Blueprints of systems before coding

- Iterative development process

- Maintainance and modifications

- Control of dependencies

- Separation into components

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment

1 SA/SD and OO

e i

N\

N

.
e

Top-down hierarchies of Bottom-up hierarchy of
function calls and dependencies dependencies

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 3

1 Software in HEP Experiments
JADE OPAL

1 Strahirohrzahler seampee CUNTERS . Electromagnetic
@ Endseitige Bleiglaszahler END PLUGLEAT GLASS COUNTERS .
; . calbrimetars
Drucktank PRessume (v .
‘ Myon-Kammern 0N ChAMBERS Hadron calrimetars
Jet-Kammern T CHAMBER: and raturn yoke
it~ Zahler TR LS COMTERS
Spule coL ¥ :
Tentrale Bleiglaszahler CONRALLCAN GLASS LOMTERS
Hagnete‘nch PARGCT YOKE
Myon-Filter M0k FILTERS J
Bewe?licherindstupfen REMOVABLE END PLUG |
Strahlrohr BEAM PIPE I
@ Vorwirls-Detektor 1aami comier [
@& Mini-Beta Quadrupal MINI BETA DUADRUPOLEqg
15 Fahrwerk Movibg DEVICES /1;. :

it 22U R PV

chamber
Vertax

Gesamtgewicht 1oL vweH:~ 12001 chamber

Magnetfeld mackenc reLo: 05T

. Beteiligte Institute PARTICIRANTS

DESY,Hamburg, Heidelberg,

Rt Lo ok . Microvertex
detector

' L[]
80's 0O(100) kloc, 2000 routines,
14 packages s

Solenoid and

g |
Pra@amplar pressU e vesse
Forward Time of flight
detector detector

Silicon tungsten

90's 500 kloc, 6900 routines, 54 packages™ "

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 4

1 Software in HEP Experiments

00's O(1) Mloc, O(10k) classes, 00's O(1) Mloc, O(1k) classes,
O(1k) packages 0(100) packages

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 5

2 Complex Systems

* For our purpose complex systems (Booch):

- have many states, i.e. large “phase space”,

- are hard to comprehend in total

~hard to predict (SN I SURE
° EXamp]eS: .

- ant colony, an ant

- computer

- weather

— a car

e

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 6

2 Complex Systems: Hierarchical

 Composed of interrelated subsystems

- subsystems consist of subsystems too

- until elementary component

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment

2 Complex Systems: Components

* Links (dependencies) within a component
are stronger than between components

- inner workings of components separated from
interaction between components

- service/repair/replace components

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment

2 Complex Systems: Evolved
from a simpler system

 Complex system designed from scratch
rarely works

e Add new funtionality/improvements in
small steps

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment

2 Complex Systems: Two

orthogonal views
 The Object Structure

Objects

- “part of” hierarchy, functions

- actual components

— concrete

e The Class Structure
- “1s a” hierarchy
- kinds of components ===

— abstract

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 10

3 The Object Model

 Four essential properties

— Abstraction (Booch)

- Encapsulation

- Modularity
- Hierarchy

 Two more useful properties

- Type

— Persistence

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 11

3 Abstraction

The characteristics of an object which make it

unique and reflect an important concept
(following Booch)

Jackson Pollock, She-Wolf, 1943

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 12

3 Encapsulation

Separates interface of an abstraction
from its implementation

Abstraction: car
Interface: steering, pedals,
controls

Implementation: you don't need to
know, quite different
between different
makes or models

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 13

3 Modularity

Property of a system decomposed into cohesive
and loosely coupled modules

Cohesive: group logically related
abstractions

Loosely coupled: minimise dependencies
between modules

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 14

3 Hierarchy

Hierarchy is a ranking or ordering of abstractions

PSA A8SA
turbo diesel

engine Turbo diesel
engine ~, Diesel
VW19 — -

engine ™
TDI Internal combustion
L Petrol .~ €ngine
engine
v

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 15

3 What 1s an Object?

An object has:
. Functions
interface — (Methods)
behaviour
identity
state
Interface (how to use it): Identity (which one is it):
Method signatures Address or instance ID
Behaviour (what it does): State (what happened before):
Algorithms in methods Internal variables

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 16

3 Object Interactions

Objects interact through their interfaces only

Objects manipulate their

a:A

b:B

own data but get access to

-¥: float = 27.0 -Y: float = 3.0

TneedXandyY (b:B) p—0eYQ ligety () : float

other objects data through

interfaces only

}

A::needYand¥Y (b:B) {

float myY= B.getY();

AN

Most basic: get() / set(...) member
functions, but usually better to

provide “value added services”, e.g.

- fetch data from storage
- perform an algorithm

Also called
message passing

Object-Oriented Programming in Physics Stefan Kluth

Advanced Methods of Software Develoment

17

3 Objects and Classes

* Objects are described by classes

- blueprint for construction of objects

- OO program code resides in classes

* Objects have type specified by their class

e Classes can inherit from each other

- implies special relation between corresponding
objects

* Object interfaces can be separated from
object behaviour and state

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment

18

3 Dynamic Object Polymorphism

A
+doSomething () Can be "pure vi;tual"
(no implementation)

C

D

+B ()
tdoSomething ()

+C ()
+doSomething ()

+D ()
+doSomething ()

Objects of type A are actually of type B, C or D

Objects of type A can take many forms, they are polymorph
Code written in terms of A will not notice the difference
but will produce different results

Can separate generic algorithms from specialisations
Avoids explicit decisions in algorithms (if/then/else or case)

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 19

3 Dynamic Object Polymorphism

1
class A |
public:
A 1 virtual wvoid
+doSomething() }°° ;. doSomething () =0;
B C D

+B ()
+doSomething ()

+C {)
+doSomething ()

+D ()
+doSomething ()

L]

L]
L]
%
L]
-.

class B:
public:

public A |

void doSomething () {
cout<<"I am B"<<endl;

int main () {

vect or <A*> va;

va. push_back(new B());
va. push_back(new C());
va. push_back(new IX));

| for(int i=0; i<va.size(); i++){
}i vali]->doSonet hi ng();
Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 20

3 Mechanics of Dynamic
Polymorphism

Virtual function table with function pointers
in strongly typed languages, e.g. C++, Java

A B C
1 doSomething ,0x3BA5 0x8BF1 _—
2 display O0xOBF3 0x2CD5 Fast and efficient!
3 cleanup 0x6437 0x7883
B: : doSonet hi ng C. . doSonet hi ng
B: : di spl ay C. . di spl ay
B: : cl eanup C. : cl eanup

Lookup by name in hash-tables in weak+dynamically typed
languages (Perl, Python, Smalltalk)

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 21

3 Inheritance SA/SD vs OO

SA/SD (procedural): 0O0:

Inherit for functionality Inherit for interface

We need some function, it There are some common
exists in class A = inherit properties between several
from A in B and add some more ©bjects = define a common
functionality interface and make the objects

inherit from this interface

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 292

4 Dependency Management

 The parts of a project depend on each other

- Components, programs, groups of classes,
libraries

 Dependencies limit
- flexibility
- ease of maintainance

- reuse of components or parts

 Dependency management tries to control
dependencies

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment

23

4 Problems with Software

* Rigid

e Fragile

 Not Reuseable
* High Viscosity

e Useless Complexity

* Repetition
e Opacity

These statements apply to an
average physicist/programmer
who develops and/or maintains
some software system.

Software gurus will always find
some solution in their code.

Do you want to rely on the guru?
What if that person retires, finds
a well-paid job or gets moved to

another project?

Object-Oriented Programming in Physics

Stefan Kluth

Advanced Methods of Software Develoment 24

4 Example: The Copy Routine

* Code rots
* There are many reasons for code rot
 We'll make a case study (R. Martin)

* A routine which reads the keyboard and
writes to a printer

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 25

4 Copy Version 1

AN
void Copy (void) {
char ch;
while ((ch= ReadKeyboard()) != EOF) {
WritePrinter (ch);
}
}
A simple solution
Coipy to a simple problem
ReadKeyboard and
d/ : d/ : WritePrinter are probably
ReadKeyboard | | WritePrinter
reuseable

Object-Oriented Programming in Physics

Stefan Kluth

Advanced Methods of Software Develoment 26

4 Copy Version 2

bool GFile;

void Copy (void) {
char ch= 0;
while(ch != EOF) {
if(GFile) { ch= ReadFile /()
else { ch= ReadKeyboard(); }
WritePrinter (ch);
}
}

.

Copy
ReadFile | | ReadKeyboard WritePrinter
V
«global»
GFile

Many users want to read files
too ...

But they don't want to change
their code ... can't put a flag
in the call

Ok, so we use a global flag
Its backwards compatible,

to read files you have to set
the flag first

Object-Oriented Programming in Physics

Stefan Kluth

Advanced Methods of Software Develoment 27

4 Copy Version 3

bool GReadFile;
bool GWriteFile;

void Copy(void) {

char ch;

while(1) {
if{ GReadFile) ({
else { ch= ReadKeyboard(); }
if({ ch == EQF) break;
if(GWriteFile } { WriteFile(ch);
else { WritePrinter(ch); 1}

ch= ReadFile(); }

A

}

Users want to write to files,
of course they want it
backwards compatible

We know how to do that!

The Copy routine seems to

Copy L :
grow in size and complexity
\l/ \|/ \I/ \|/ every time a feature is
ReadFile | [ReadKeyboard | | [WritePrinter]| [WriteFile |2dded

\! The protocol to use it
«globaly «ql?bal? .

GReadFile GWriteFile becomes more complicated

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 28

4 Copy done properly in C

¥include <stdio.h>

void Copy(FILE* in, FILE* out
— gor) (|comes to the rescue!

char ch;

while((ch= fgetc(in))

fputc(ch, out);
}
}

Vo Finally a good C programmer

Copy

!

«stdio»

FILE

+fgetc (:FILE*) :

char

+fputc(:char, :FILE*)

But this 1s C?!

FILE, fgetc and fputc behave like
an interface class

FILE is a generic byte stream
manipulated by fgetc, fputc etc.

Object-Oriented Programming in Physics

Stefan Kluth Advanced Methods of Software Develoment 29

4 Copy in C++

#include "AbsReader.hh"
#include "AbsWriter.hh"

class Copy |
public:

Copy (AbsReader r,
reader= r;
writer= w;

bi

BbsWriter w) |

_,H copyBytes () {
',-' char ch;
COPY i while((ch= reader.read()) != EOF)} {

-reader: AbsReader writer.write(ch);

-writer: AbsWriter }_}

+Copy (AbsReader, AbsWriter) o7 .
class AbsBReader | 3 private:

public: fcopyBytes () AbsReader reader;
virtual AbsWriter writer;
char read() = 0; }
]
. [«interface» «interface» clziil?E?WIiter {
AbsReader AbsWriter virtual write(char) = 0;
+read(): char +write{char) }
l] [1 More complicated
KeyboardReader FileReader PrinterWriter FileWriter
+read(): char +read () : char +write(char) +write (char)
- but easy to add new
features
™ " ™

#include "AbsReader.hh" #include "AbsWriter.hh"

class KeyboardReader:

public AbsReader |

class PrinterWriter: public AbsWriter |

public:
KeyboardReader () ;
virtual char read();

public:
PrinterWriter();
virtual write(char);

Object-Oriented Programming in Physics

Stefan Kluth

Advanced Methods of Software Develoment

30

5 Class Design Principles

* Single Responsibility Principle (SRP)
* Open/Closed Principle (OCP)

e Liskov Substitution Principle (LSP)

- a.k.a. Design by Contract
* Dependency Inversion Principle (DIP)

* Interface Segregation Principle (I1SP)

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment

31

5 Single Responsibility Principle
(SRP)

A class should have only one reason to change
Robert Martin

Related to and derived from cohesion, i.e. that elements
in a module should be closely related in their function

Responsibility of a class to perform a certain function
1s also a reason for the class to change

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 32

5 SRP Example

All-in-one wonder

Separated responsibilities

Always changes to 4vector

4vector 4vector
+dot (4dvector) : double +dot (4vector) : double
+toperator+(4vector) : 4vector +operator+ (4vector) : 4vector
+rotate (dmatrix) : 4vector
+boost (dvector) : 4dvector
Rotation
+rotate(dvector) : 4vector
Boost
+boost (dvector) : 4vector

Changes to rotations or boosts
don't impact on 4vector

Object-Oriented Programming in Physics Stefan Kluth

Advanced Methods of Software Develoment

33

5 Open/Closed Principle (OCP)

Modules should be open for extension,

but closed for modification
Bertrand Meyer

Object Oriented Software Construction

Module: Class, Package, Function
New functionality ® new code, existing code remains unchanged
“Abstraction is the key” = cast algorithms in abstract interfaces

develop concrete implementations
as needed

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 34

5 Abstraction and OCP

Client Client
—-myServer: Server* -myServer: AbsServer¥* Cllent iS Closed t() Changes
+doSomething () +doSomething () . . .
d/ in implementation of Server
«interface» . . .
Sorver AbsServer Client is open for extension
2 1
+serve () : Result rserve () Resu.t through new Server
T implementations
Server . _
tserve 0 : result | Without AbsServer the Client
is open to changes in Server
Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 35

5 Liskov Substitution Principle
(LSP)

All derived classes must be substituteable

for their base class
Barbara Liskov, 1988

The “Design-by-Contract” formulation:

All derived classes must honor the contracts

of their base classes
Bertrand Meyer

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 36

5 LSP: FourVector Example

«function» | // Expects mag2()>0
calcMag double m= sqrt(v.mag2());
J/ ™~ This can crash when v
1s a Four r
ThreeVector s a FourVecto
“X,y,z: double double ThreeVector::mag2 () |
+mag2 () : double f==--- return x*x+y*y+z*z;
}
FourVector
—t: double double FourVector::mag2()
+mag2 () : double pe=-- return t*t-x*x-y*y—-z*z;

}

A 4-vector IS-A 3-vector with a time-component? Not in OO,
4-vector has different algebra - can't fulfill 3-vector contracts

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 37

5 Dependency Inversion
Principle (DIP)

Details should depend on abstractions.

Abstractions should not depend on details.
Robert Martin

Why dependency inversion? In OO we have ways to
invert the direction of dependencies, i.e. class inheritance

and object polymorphism

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment

38

5 DIP Example

#include "Server.hh"”
volid Client::doSomething ()

Result r= myServer->serve();

#include "AbsServer.hh"

void Client::doSomething ()} {

Dependency changed

Result r= myServer->serve () ; from Concrete to

abstract ...

Client
-myServer: Server*
+doSomething ()

l

Server
+serve(): Result

Client

-myServer: AbsServer*

+doSomething ()

// no #include
Eesult Server::servel) |

return EResult;

}

v

The abstract class
is unlikey to change

#interfaces»

AbsServer

+serve(): Result

|

class AbsServer |
public:
virtual
Besult serwvel) = 0;

Server

+serve () : Result

#include

Result Server::serve() |

return Result;

"AhsServer.hh"

... at the price of dependency
here, but it is on abstraction.
Somewhere a dependency on
concrete Server must exist,
but we get to choose where.

Object-Oriented Programming in Physics

Stefan Kluth

Advanced Methods of Software Develoment 39

5 Interface Segregation Principle

(ISP)

Many client specific interfaces are better
than one general purpose interface

Clients should not be forced to depend
upon interfaces they don't use

1) High level modules should not depend on
low level modules. Both should depend
upon abstractions (interfaces)

2) Abstractions should not depend upon

details. Details should depend abstractions.
Robert Martin

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 40

5 ISP Example: Timed Door

= «interface»
Timer O——> TimerClient

+accept (:TimerClient, :Time)

+timeOut ()

T

void Door::timeOut () { . Door
if(isOpen()) // Alarm [==---- +timeOut ()
} +1s0pen(): bool
|
SwingDoor RevolvingDoor SlidingDoor
+isOpen(): bool +isOpen(): bool +1sOpen () : bool

return false;

}

void RevolvingDoor: :isOpen () {DW

There may be derived classes of Door which don't need the
TimerClient interface. They suffer from depending on it
anyway.

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment

5 Timed Door ISP

Timer

«%nterfape»
TimerClient

o—>

+accept (:TimerClient, :Time)

«interface»
Door

<

DoorClient

+timelOut ()

void TimedDoor: :timeQOut ()
if(isOpen()) // Alarm

})

+isLocked(): bool

TimedDoor

RevolvingDoor

+islocked() : bool

+timeCut ()
+is0pen () : bool

SwingDoor SlidingDoor
+is0Open () : bool +isOpen(}): bool
+isLocked(): bool +islLocked(): bool

RevolvingDoor does not depend needlessly on TimerClient
SwingDoor and SlidingDoor really are timed doors

Object-Oriented Programming in Physics

Stefan Kluth

Advanced Methods of Software Develoment

42

OOAD in Physics: Summary

* Software is complex:
- learn from other successful complex systems

e Object model:

- Abstraction, encapsulation, modularity,
hierarchy

- Objects: building blocks for complex systems
e Class design:

- Manage dependencies
- SRP, OCP, LSP, DIP, ISP

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment

43

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 44

1 Common Prejudices

OO was used earlier without OO languages

— Doubtful. A good procedural program may deal
with some of the OO i1ssues but not with all

- OO without language support is at least
awkward and dangerous if not quite
irresponsible

e It is just common sense and good practices

- It is much more than that, it provides formal
methods, techniques and tools to control
analysis, design, development and
maintainance

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 45

1 Just another paradigm?

* Object-orientation is closer to the way
problems appear in life (physical and non-
physical)

* These problems generelly don't come
formulated in a procedural manner

 We think in terms of "objects" or concepts
and relations between those concepts

 Modelling is simplified with OO because
we have objects and relations

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment

46

1 Why OOAD in Physics?
e Physics is about modelling the world:

- Objects interact according to laws of nature:
particles/fields, atoms, molecules and
electrons, liquids, solid states

« OOAD: create models by defining objects
and rules of interaction

- This way of thinking about software is well
adapted and quite natural to physicists

« OOAD is software engineering practice

- manage large projects professionally

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 47

3 Object Interface vt

use it

Create an object (constructors) The object interface is given
from nothing (default) by its member functions described

from another object (copy) by the objects class

from 3 coordinates
ThreeVector

+ThreeVector ()
+ThreeVector (:const ThreeVector &)
+ThreeVector (:double, :double, :double)

+dot (:const ThreeVector &) : double
+cross (:const ThreeVector &): ThreeVector
+mag () : double

A dot product ¢

And possibly many other
A cross product member functions

Magnitude

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 48

1.6 Object Behaviour "

does

cl ass ThreeVector {

oubl i c: Default constructor sets to 0

ThreeVector() { x=0; y=0; z=0 }; Dot and cross are
L o unambigious

doubl e dot(const ThreeVector &) const;
ThreeVector cross(const ThreeVector &) const;

doubl e nmag() const;
\ Magnitude, user probably

expects 0 or a positive number
private:

double Xy, z; const means state of object does
} not change (vector remains the same)
when this function is used

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 49

3 Object Identity Which one

ThreeVect or a;
ThreeVector b(1l.0,2.0,3.0);

ThreeVector c(a);
Thr eeVect or d= a+b:;

ThreeVector* e= new ThreeVector();

Thr eeVector* f= &a;
ThreeVector & g= a;

doubl e nmd= d. mag();
double nf= f->mag();
doubl e ng= g. mag();

is it

There can be many objects
(instances) of a given class:

Symbolically:
a#zb#c#d#e
butf=g=a

Pointer (*): Address of memory
where object is stored; can
be changed to point to
another object

Reference (&): Different name
for identical object

Object-Oriented Programming in Physics

Stefan Kluth

Advanced Methods of Software Develoment 50

3 ObJeCt State What happened

before

Different objects of the same class have

The internal state
of an object is given

by its data members
- —

different identity

different state

possibly different behaviour
but always the same interface

p: ThreeVector

-xX: double = 2.356
-y: double = 19.45
—z: double = -=-5.284
-n: int = 5
+ThreeVector ()

+ThreeVector (:const ThreeVector &)
+ThreeVector (:double, :double, :double)
+dot (:const ThreeVector &) : double

+cross (:const ThreeVector &): ThreeVector
+mag () : double

Object-Oriented Programming in Physics

Stefan Kluth Advanced Methods of Software Develoment 51

3 Private Object Data

* Object state a priori unknown
* The object knows and reacts accordingly

* Decisions (program flow control)
encapsulated

e User code not dependent on algorithm
internals, only object behaviour

* Object state can be queried (when the
object allows it)

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment

52

3 Class Inheritance

* Objects are described by classes, i.e. code

e Classes can build upon other classes:

- reuse (include) an already existing class
- add new methods and member data

- replace (overload) inherited methods

- interface of new class must be compatible

- New class has own type and type(s) of
parent(s)

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 53

3 Static Polymorphism
(Templates)

Tenpl ate <class T> class U { Cl ass B {
publ i c: public:
voi d execute() { void init();
T t: void run();
t.init(); void finish();
t.run(); }
t.finsish(); Template class U contains generic algorithm
| } Class B implements
#i ncl ude “B. hh” No direct dependence between U and B, but
#1 ncl ude “U. hh” interface must match for U to compile
Int main {
U ub; :
ub. execut e(): Can't change types at run-time
} Using typed collections difficult

- don't use static polymorphism unless proven need

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 54

4 Dependency Management
Summary
* Lack of sensible design leads to code rot
- Useless complexity, repetition, opacity
* Software systems are dynamic
- New requirements, new hardware

* A good design makes the system flexible
and allows easy extensions

— Abstractions and interfaces

 An OO design may be more complex but it
builds in the ability to make changes

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 55

4 The Shape Example -
Procedural

Shape. h
enum ShapeType { isCrcle, isSquare },;
t ypedef struct Shape { dr awShapes. c
enum ShapeType type #i ncl ude " Shape. h"
} shape; #include "Crcle.h"
#i ncl ude "Square. h"
Crcle.h
t ypedef struct Circle { voi d drawShapes(shape* list[], int n) {
enum ShapeType type; int i;
doubl e radi us; for(int 1=0; i<n; i++) {
Poi nt center; shape* s=list[i];
} circle; swtch(s->type) {
void drawCircle(circle*); case isSquare:
drawSquare((square*)s);
Square. h br eak;
t ypedef struct Square { case isCrcle:
enum ShapeType type; drawCircle((circle*)s);
doubl e si de; br eak;
Poi nt topleft; }
} square; }
voi d drawSquare(square*); }

RTTI a la C: Adding a new shape requires many changes

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 56

4 The Shape Example OO

«function»
drawShapes [~---..
.
#include "Shape.h"
void
v drawShapes (Shape* list[],
int n) {
Shape for(int 1=0; i<n; 1++) {
+df§§’() list[i]->draw();
)
}
| | drawShapes is closed against changes
Circle Square from adding new shapes
+draw () +draw () 1ng w p

It is open for extension, e.g. adding new

functions to manipulate shapes

Just add new shapes or functions and relink

Object-Oriented Programming in Physics

Stefan Kluth Advanced Methods of Software Develoment 57

3 Type
Typing enforces object class such that objects
of different class may not be interchanged

Strong typing: operation upon an object must be defined
Weak typing: can perform operations on any object
Static typing: names bound to types (classes) at compile time

Dynamic typing: names bound to objects at run time
Static binding: names bound to objects at compile time

Dynamic binding: names bound to objects at run time

C++, Java: strong+static typing + dynamic binding

Python: strong+dynamic typing

Perl: weak+dynamic typing

Fortran, C: strong+static typing + static binding (except casts)

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 58

3 Classes = Types

e Class is new programmer-defined data
type
* Objects have type

- extension of bool, int, float, etc

- e.g. type complex didn't exist in C/C++, but can
construct in C++ data type complex using a
class

 ThreeVector is a new data type

- 3 floats/doubles with interface and behaviour

- can define operators +, -, *, / etec.

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 59

3 Interface Abstraction
 Common interface of group of objects is an

abstraction (abstract class, interface class)

- find commonality between related objects

- express commonality formally using interfaces

e Clients (other objects) depend on abstract
interface, not details of individual objects

- Polymorphic objects can be substituted

 Need abstract arguments and return
values

- or clients depend on details again

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 60

4 Contract Violation

e The contract of ThreeVector:

- Magnitude guaranteed to be non-negative

e FourVector breaks this contract

* Derived methods should not expect more
and provide no less than the base class

methods

- Preconditions are not stronger

— Postconditions are not weaker

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment 61

5 Class Design Principles
* Single Responsibility Principle (SRP)

— Only one reason to change

* Open-Closed Principle (OCP)

- Extend functionality with new code
e Liskov Substitution Principle (LSP)

- Derived classes substitute their base classes
* Dependency Inversion Principle (DIP)

- Depend on abstractions, not details

* Interface Segregation Principle (ISP)
— Split interfaces to control dependencies

Object-Oriented Programming in Physics Stefan Kluth Advanced Methods of Software Develoment

62

	title
	oocon 1
	oocon 3
	dets
	dets2
	cmplx1
	cmplx3
	cmplx4
	cmplx7
	cmplx9
	objm1
	objm2
	objm3
	objm4
	objm5
	oocon 7
	oocon 16
	classes
	oocon 19
	polym
	Slide 21
	oocon 13
	dmw
	dmprob
	copy
	cpv1
	cpv2
	cpv4
	cpc
	cpcpp
	clsdes
	srp1
	srp2
	ocp
	ocpabs
	lsp
	4vec
	dip
	dipexam
	isp
	timedoor
	tdisp
	summary
	empty
	oocon 4
	oocon 2
	oocon 6
	oocon 8
	oocon 9
	oocon 10
	oocon 11
	privdata
	oocon 15
	tmpl
	cpsum
	shape
	shapeoo
	Slide 58
	oocon 14
	absstract
	lspct
	cdpsumm

