DC-SRF Photoinjector

DC-Superconducting Hybrid High Rep-rate Guns at PKU

Senlin HUANG

Peking University SRF Laboratory Institute of Heavy Ion Physics, Peking University

DC-Superconducting hybrid high rep-rate guns at PKU

- □ A brief overview of DC-SRF-I operation
- From DC-SRF-I to DC-SRF-II
- Progress on DC-SRF-II

- □ Combine DC gap and SRF cavity (1.3 GHz)
- □ Proposed in 2001 as a variant to SRF gun

□ Advantages:

- Good compatibility between semiconductor photocathode and SRF cavity (compared to SRF gun);
- Less stringent requirement on DC voltage (compared to DC gun);
- Compact structure for high repetition rate, high average current, MeV e-beam generation.

K. Zhao et al., NIMA 475 (2001), 564

Stages of DC-SRF Photoinjector

□ Prototype (2003 - 2004)

Feasibility preliminarily proved @ 4.2 K

□ 1st-generation (2007 - 2016)

Stable operation in 2014, shut down in 2016 Operation resumed shortly in Sep. 2020 Delivered to Shanghai in Aug. 2021

□ 2nd-generation (2017 -)

Assembled in Jan. 2021 Cooling down on April 20, 2021 First-stage beam test started on April 29, 2021

A Brief Overview of DC-SRF-I Operation

Stable operation in 2014

Beam energy ~3.4 MeV

○ Pulsed operation, avg. current ~1 mA in 2 ms macro pulse (1st-gen RF coupler)

- RMS emittance (95%) ~1.5 mm-mrad @25 pC
- Low dark current (< 1 nA)

S. Quan et al., NIMA 798 (2015), 117

High Rep-Rate THz Generation (2014-2015)

THz superradiant undulator radiation experiments demonstrated stable velocity bunching and flexible e-beam energy tuning.

X. Wen et al., NIMA 820 (2016) 75-79

MHz MeV UED (2014-2015)

Measured electron diffraction patterns from a single-crystalline Au foil (a) and a polycrystalline Al foil (b) [repetition rate: 812.5 kHz, integration time: 200 ms, total charge: 33 pC]; (c) Intensity projections along the (200) and (400) spots in (a).

Electron diffraction pattern from a single-crystalline Au foil (repetition rate: 27 MHz, integration time: 30 ms, total charge ~ 1 nC)

L. Feng et al., APL 107, 224101 (2015)

Joint Operation with SRF Linac (2015)

Deliver beam to a 2×9-cell SRF linac for further acceleration in <u>2015</u>
 Cavity degradation has not been observed after long-term operation

Milestone for PKU SRF: Capability for high-quality SRF cavity fabrication, small-scale SRF accelerator R&D and operation ... (good foundation for 2nd-generation DC-SRF photoinjector)

Operation Resuming Test in 2020

PKU SRF Lab, Oct. 14, 2021

9

Operation Resuming Test in 2020

Strong field emission in the SRF cavity when $E_{acc} > 5$ MV/m (cavity contaminated; exposed to air for several times after 2016)

For beam test: Macro pulse duration: 1-10 ms Repetition rate: 10 Hz $E_{acc} = 7$ MV/m (1 kW)

RF-1+RF-2: 1.2 nA; DC+RF-3: 0.53 nA (0.4 nA when DC off) Dark current from DC: 0.13 nA Dark current from RF: 1.6 nA

DC-SRF-I Operation Parameters

Parameters	2020	2014-2016
DC voltage	50 kV	45 kV
SRF cavity frequency	1.3 GHz	·
SRF cavity gradient	7 MV/m	9 MV/m
Driven laser longitudinal profile	Gaussian (nearly)	
Driven laser transverse profile	Gaussian (nearly)	
Driven laser pulse width (RMS)	1.5 ps	5-6 ps
Driven laser radius (RMS)	1 mm	•
DC dark current	0.13 nA	< 1 nA (total)
RF dark current	1.6 nA	
Electron energy	2.7 MeV	3.4 MeV
Bunch charge	40-80 pC	10-40 pC
Bunch repetition rate	1 MHz, 10 MHz	0.8125 - 81.25 MHz
Macro pulse length	1 - 10 ms	1 - 7 ms
Macro pulse repetition rate	5 - 10 Hz	
Average current in macro pulse	0.8 mA (max.)	0.5 - 1 mA

DC-SRF-I for Shanghai Test Line

Delivered to Shanghai in August, 2021 RF coupler to be replaced with the upgraded version Cavity: high pressure rinsing to be performed in Shanghai

12

DC-SRF-I for Shanghai Test Line

RF coupler test results (CW)

Motivation

(1) R&D of high-performance superconducting photoinjector for CW XFEL, as part of a national project in cooperation with SINAP (Jul. 2016- Jun. 2021, funded by National Key Research and Development Program of China Grant No. 2016YFA0401904)

(2) R&D of high average current (1-10 mA) electron source

From DC-SRF-I to DC-SRF-II

	DC-SRF-I (operation)	DC-SRF-II (design)
DC voltage	45-50 kV	100 kV (DC structure redesigned)
SRF cavity	3.5-cell, 7-9 MV/m	1.5-cell, 14 MV/m
Cathode	Cs ₂ Te	K ₂ CsSb
Drive laser	266 nm; w/o shaping, ~5 ps	532 nm; transversely truncated Gaussian
		(1σ) ; longitudinally uniform, ~20 ps

✓ RF coupler upgraded

Lower emittance + CW operation

An optimized case with modest parameters

Laser pulse length @ 20 ps, transverse size @ 2 mm (full width) DC voltage @ 100 kV, SRF cavity gradient ~ 14 MV/m Solenoid B-field @ 500 Gs

A Possible Layout of CW XFEL Injection Line

Normalized RMS emittance ~ 0.37 μm
High-order RMS energy spread ~ 2.75 keV (Bunch charge @ 100 pC)

RMS bunch length ~ 1.0 mm
Current skewness ~ 0

Main parameters of the XFEL injection line with a harmonic (3.9 GHz) bunching cavity.

Parameter	Value	Unit
DC-SRF-II		
RF cavity phase	-6.08	degree
RF cavity amplitude	26.11	MV/m
Solenoid		
Central position	1.0	m
Strength	0.0628	Т
Bunching cavity		
Entrance position	1.95	m
Amplitude	3.4315	MV/m
Phase	-162.27	degree
Injection linac		
Entrance cavity position	4.42	m
1st-4th cavity amplitude	22.09	MV/m
1st-4th cavity phase	-3.15	degree
5th–8th cavity amplitude	25.46	MV/m
5th-8th cavity phase	-6.05	degree

S. Zhao et al., NIMA 1018 (2021), 165796

DC-SRF-II

Important changesDC structureSRF CavityRF couplerCathodeDrive laser

DC Electrodes and Ceramics

Electrodes tested @ 100 kV

Ceramics tested @ 100 kV

SRF Cavity

- □ One large-grain cavity and one fine-grain cavity fabricated
- Vertical test results
 - ✓ Both cavities achieved the gradient higher than 15 MV/m;
 - ✓ Large-grain cavity has a maximum gradient 25 MV/m and an unloaded quality factor 1.1E10 @ 20 MV/m.

20

RF Coupler

Room temperature RF test

- ✓ pulse mode, 10% duty factor: 70 kW forward power (> 24 h)
- ✓ CW mode: 20 kW forward power (> 30 h, no significant vacuum fluctuation)

Cathode (Bi-alkali)

Cathode Drive Laser

Test Beam Line

DC-SRF-II

- ✓ Emittance measurement: scanning single slit + YAG
- ✓ Beam current measurement: Faraday cup
- ✓ Beam energy measurement: 90°Bending Magnet

DC voltage 45 kV, SRF cavity gradient 9 MV/m

Emittance Measurements

Bunch Charge Test

Average beam current vs macro pulse duration

CW Operation Test

27

Cathode QE variation

PKU SRF Lab, Oct. 14, 2021 28

Deflecting Cavity Tests

Electron beam: 100µs, 10 Hz (pulse mode)

2856 MHz NC deflecting cavity used (synchronization problem, to be fixed)

DC-SRF-II photoinjector has been tested

- CW operation of the DC-SRF photoinjector for the first time
- Sub-micron emittance achieved with DC-SRF photoinjector
- Second stage tests coming around December 2021
 - o Hardware problems being fixed
 - DC voltage ~100 kV
 - SRF cavity Gradient > 10 MV/m
 - Bunch charge ~100 pC

Peking University SRF Laboratory

Thank You!

PKU SRF Lab, Oct. 14, 2021 31