
 1

Data Handling Jamboree report

● WLCG meeting in June, Amsterdam
● and follow up from collab. Meeting, SW week,...

● General theme and assumptions
● Demonstrators

 2

General Theme and Assumptions

● MONARC model, of hierarchical Tiers, is 10 years old
● based on the assumption that network bandwidth would be

primary limitation
– minimize WAN traffic: keep within national research net

– jobs go to data: write once-read many

● In practice, network bandwidth was never a constraint
● and will even improve: industry driven
● constraint is own middleware

– SRM, FTS, LFC.....poor reliability, performance and no failover

● Standard protocols and solutions preferred
● funding for development/maintenance dries up

 3

MONARC in action

● OPN for T0 – T1 is probably correct
● only added T1-T1 connections

● After much work and expt. tools takeover
● we can move lots of data reliably

– within MONARC model, i.e.T0-T1-cloud T2s
– between T2s of different clouds, restriction is only FTS

● current hop via T1s has no basis in network topology

 4

T2-T2 between clouds

T2

T1

T2

T1

Via T1
SCRATCHDISK

 5

FTS redesign

● Channels designed for network limitation
● Typically control inbound traffic

● but no coordination between FTS instances
● SRMs apparently still need protection

● Allow anywhere to anywhere and let routing do
its job
● optimizing N-to-N channels is not easy(ask CMS)

 6

PD2P

● Currently pre-place data based on expected
access pattern
● much of the data is not touched
● users access data which is not distributed

– e.g. ESD only at T1s

● Panda places datasets based on real user jobs
● subscription made, when job queued at T1
● subsequent jobs can go to subscribed T2

– or re-broker initial job
● only distribute data which is used

 7

Chirp Demonstrator

● “A file system for Grid computing”
● shared FS with full acls and x509 authentication
● simple: users can easily deploy servers

● Several features of global file system
● access it from user job and client

– workshop assumption of WAN usage allows this

● keep small files out of DDM,LFC,SRM,FTS,...

● May be replaced by NFS4.1 or webdav(http) when
functional
● not anti-standard protocols

http://www.cse.nd.edu/~ccl/software/chirp/

 8

User File sizes

9MB

 9

Server and Client

● Start your own server (then it trivially scales)
● chirp_server -r /data &
● needs 1 port open

● Access the server from anywhere
● chirp_put localFile host.lmu.de /mydir/theFile
● puts file in host:/data/mydir/theFile

● Or FUSE the file system
● $ mkdir chirp
● $ chirp_fuse chirp
● $ ls chirp/host.lmu.de/mydir/theFile
● And all other posix operations

● All of the above are x509 authenticated

 10

Auth and acls

● Each directory has hidden file .__acl
globus:/C=DE/O=GermanGrid/OU=LMU/CN=Rodney_Walker rwlda
globus:/DC=ch/DC=cern/OU=Organic_Units/OU=Users/CN=hanawa/CN=678589/CN=Keita_Han
awa rl
globus:/C=AT/O=AustrianGrid/OU=UIBK/OU=astro/OU=HEPHY/CN=Brigitte_Epp rl
globus:/C=CA/O=Grid/OU=westgrid.ca/CN=Roghaiyeh_Dastranj_Tabrizi_42 rl

● User controls acl for their directory
● e.g. can give access to analysis group

– share files produced on NAF
– aggregate output from jobs running on Grid

 11

Status

● Chirp server at CERN configured with write
access for ATLAS VO

● Panda pilot writes output and log files
● Ganga config for user to set chirp host and path

● config.Panda.chirpconfig='chirp^voatlas92.cern.ch^/RodWalker^'

● Chirp client available on CERN afs
● Ready for beta users

● https://twiki.cern.ch/twiki/bin/view/Atlas/ChirpForUserOutput

https://twiki.cern.ch/twiki/bin/view/Atlas/ChirpForUserOutput

 12

Caching via xrootd

● xrootd instances on different sites can get files
from one another, and cache them
● 1PB test system at CERN
● to be loaded with ATLAS/CMS data

● Currently asking for volunteer test sites at
1,10,100ms RTT

● xrootd enthusiasts seem to have found support
from CERN
● Castor is particularly bad for direct io

 13

Block caching

● TTreeCache intelligent read-ahead
● learning phase of few events
● 30MB vector read of only the blocks needed

● Xrootd caches sparse file
● only fills in the bocks requested in a vector read
● blocks available to other jobs on the site

● root caches sparse file on 'local' FS
● local can be shared FS
● provide api for for any cache mechanism, e.g. xrootd

 14

Standard Protocols

● NFS4.1 preferred for direct access
● uses file protocol and buffer cache
● no vector read, but posix fadvise (asynchronous

load of vector)
● sparse file caching and global filesystem

capabilities unknown (to me at least)
● Dcache and DPM will have NFS4.1 access

– disgard rfio and dcap, all is file

● NFS4.1 not industry standard yet

 15

Standard Protocols(2)

● http is industry standard with many tools
● vector read supported, root can read http files

● Caching and replica discovery
● Squid or dedicated appliances
● partial file caching not yet supported(blocks)

– is this only reason to use xrootd(not industry standard)

● not aware of large scale http access tests
● concern that xrootd enthusiasts lead us to yet

another HEP only solution

 16

Conclusions

● “MONARC is 10 years old”
● or it was just wrong

● ATLAS data access is ok, and better with minor
changes
● better guess/enforcement of user access pattern
● on-demand distribution and FTS N-to-N

● CERN Castor direct access driving wilder revolution
● installing dCache would probably suffice
● danger of another HEP solution to standard problem

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

