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Outline

* Introduction: Naturalness

* Finite approaches to QFT

e Callan-Symanzik method as a finite description of QFT
* No divergences
* No fine tunings

e Conclusions
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Higgs mass fine-tuning

e The puzzle: take the Standard Model and consider radiative corrections to
the Higgs mass. Quadratically divergent diagrams
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lead to the term dm7 o fZA?, f, - top quark Yukawa coupling, A - the
ultraviolet cutoff of the theory, i.e. the place where the Standard Model is

substituted by the more fundamental theory of Nature. Since m; << /A, one

has to fine-tune the tree Higgs mass My o to cancel the radiative
correction(s). The amount of fine-tuning:
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Cosmological constant
fine-tuning
The similar logic can be applied to vacuum energy €y,4¢:
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The radiative corrections are proportional to the fourth power of the
cutoff scale, ey,  fi'A* leading to even higher degree of fine-tuning
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Wilsonian approach

Similar picture. Low energy description of Nature provided by the SM: take

all sorts of gauge-invariant operators (0, of mass dimension n, constructed

from the SM fields. Power counting: two operators in the expansion of the
action with respect to possible operators come with positive powers of the
cutoff, namely

0, < A*h'h,
giving the mass of the Higgs boson (h is the scalar field of the SM), and
O = €vac x A,

representing the vacuum energy. The so-called fine-tuning puzzle is why the
high energy contributions to these quantities are nearly cancelled by the
low energy radiative corrections.



Two problems

1. Why the physical values of the Higgs mass and of the cosmological constant are much
smaller than the scale of new physics (cutoff A) ?

2. Why the tree values of these parameters are so fine-tuned to the radiative corrections?

Naturalness:

- These fine tunings must be avoided at any price!

- The cutoff A must be of the order of the Fermi scale to screen the influence of high

energy domain from low energy domain (SUSY, composite Higgs boson, large extra
dimensions) ?

- Cosmological evolution leading to m; < A ?

- Environmental selection leading to m; < A ?

Generically, these proposals lead to some kind of new physics right above the Fermi scale.



This problem attracted a lot of attention

The number of articles which mention | |
“hierarchy problem” or Credit: Oleg Ruchayskiy
“fine-tuning” or https://www.prophy.science

“naturalness”
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Origin of the fine-tunings

The core of the problem: quadratic (or quartic, if we talk about
the cosmological constant) divergences, inevitably appearing in

Feynman diagrams with loops in theories with fundamental
scalar fields

Renormalisation:

* Regularise UV divergent expressions

e Subtract divergences (this is exactly where fine-tunings show
up)

* Get finite values for physical observables
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Renormalisable theory
Input:

several finite parameters
of the theory

Multiplicative renormalisation: Output:

infinities, regularisation, Infinite number of
counter-terms, » physical observables:
fine-tuned cancellations finite values

Non-renormalisable theory
Input:

infinite number of finite
parameters of the theory



Renormalisable theory
Input:

several finite parameters
of the theory

Output:

Infinite number of
physical observables:
finite values

Finite formulation of QFT

Non-renormalisable theory
Input:

infinite number of finite
parameters of the theory



Hierarchy problem in finite
formulations of QFT?

No infinities (quartic, quadratic, log) in finite QFT - perhaps,
no fine-tunings? Indeed, if all expressions are finite, the
computation of low energy observables should not require the
knowledge of the UV domain of the theory.

The existence of such a formalism without large cancellations
would challenge the “naturalness” paradigm.

If just one particular formalism of computations in QFT without
necessity of fine-tunings is found, it will provide a strong
argument that the problem of quantum stability of the
electroweak scale against radiative corrections is formalism
dependent and thus unphysical.
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Finite formulations of QFT

Bogolubov-Parasuk-Hepp-Zimmermann
(BPHZ)

A certain procedure, called “R-operation”

Is applied to any Feynman graph

before performing integrations over internal
momenta) changing the integrand prescribed
by the Feynman rules to another one. The
resulting expression is then integrated, with no
infinities encountered. The R-operation can be
used in both renormalisable and non-
renormalisable field theories.
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Finite formulations of QFT

Callan-Symanzik - inspired finite
renormalisation equations

Usually, CS equations are represented as a tool
for the renormalisation group investigation of
the high energy behaviour of the renormalised
amplitudes. However, the same equations can
be used for the construction of the divergence-
free and thus completely finite perturbation
theory.
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Finite formulations of QFT

t’Hooft: Exact equations for irreducible two-,
three -, and four-point vertices which do not
contain any ultraviolet infinities. The idea is that
any divergent n-point function can be rendered
finite by subtracting the same n-point function
evaluated at different values for the external
momenta. This difference can be interpreted as
a new irreducible Feynman diagram with n+1
external lines. Integrating these “difference
diagrams” with respect to the external
momenta yields renormalisation group
equations. Potentially, these equations may
result in a completely non-perturbative and
divergence-free definition of the theory.

Lehmann, Symanzik and Zimmermann
Nishijima
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Callan-Symanzik method as a
finite approach to QFT

Ingredients for the simplest scalar theory:

e Lagrangian:
Everything is finite!

= — 0,40 - —¢2 -

e Postulated (but can be derived) equations for vertices with n legs '™ and
new, B-type vertices:
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Callan-Symanzik method as a
finite approach to QFT

Postulated (but can be derived) boundary conditions, valid in all orders of A:

[i f(2)(k2)] — i @ (k2 — 0) = im?, ' (k= O) = —il.
dk? =0

First order, tree approximations for 2 and 4 point functions, computed:
0-operation: cuts the

0], =i(k*+m?) , [[¥] =-i2 propagator in two

One-loop finite expressions, computed:

[Py g XX+ XX
0 1) 3272 x(1 = x)x? + m?

3 opt 0

[l_“(z)] _ i1
00|, 3272 m2 n

The unknown quantities f3, v, 7, , and the vertices are to be out by iterative procedure from these
equations and boundary conditions. No infinities appear at any step of computation at any loop order.
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Fine-tunings with two mass scales
In multiplicative renormalisation

Theory with two well separated physical mass scales, Mp >m

hys phys
Lo m* , M*_, Ay
L=—-—0,00 gb—EaMCDaMCD—?gb — —~ —
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Standard approach, multiplicative renormalisation MS bar scheme, need to highly
fine-tune the Lagrangian parameters m and M:
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Absence of fine-tunings
In finite QFT

* The same Lagrangian

e Postulated (but can be derived) equations for
vertices T and new, O-type vertices:

(1) (1) (1) (1) (1)
Fé’,m ’ FQ,M ’ Fﬁe,mm ’ FQG,MM ’ and FQQ,mM
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First CS equation: 2x1 matrix equation

=(n,IN) i 2 !
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Second CS equation: 2x2 matrix equation

M? I I
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Absence of fine-tunings
in finite QFT

* Postulated (but can be derived) boundary
conditions, valid in all orders of A:

d _
— TPk =i, [ (k*=0) = im*
dk? o

d _ _
di? F@‘“(ﬁ)] - [ (k2 = 0) = iM®
k>=0
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Absence of fine-tunings
in finite QFT

e First order, tree approximations for 2 point
functions, computed:

TCP| =i (K2 +m?) [ |TCY] =i (k*+M°) .

e One-loop finite expressions, computed:

itpo 1

[1:(245) ] _ iy 1 ,[f(Zcb) ] -0, [f@d)) ] _
00,mm p 327[2 mz 00,mM P 00.MM P 3271.2 M2
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Quantum corrections to 2.0

- Begins at order A2

« Standard zero momentum renormalisation scheme: order M2 corrections from

* Finite CS approach: begin from convergent (proportional to m-2 or M-2)
diagrams



Quantum corrections to 2.0

 Result from integrating CS equations:

[f(%)]\? SN X M? xeq x1n |1 —|—C2W

« Expand in region k2 << M=:

{f(%)}
>\2

- Result, valid in all orders: no fine-tunings are needed,

m and m,.c are small, M and M, are large.

DN X Xeg X [k* 40O (k*/M?)]

hys



Cosmological constant

The same consideration applies to the cosmological constant €,,,. = A , related to
the zero point function O (Casimir effect, effective potential, etc). New object:

000 — =" 9 Q¢ \2+m2) 32722 m2
Equations for ;.

i'F(QO)=< Y ﬂ_ YA a>1:,(0)

om? 2m? oA
Spo _ 9 ﬂ 9 . 9 \ro
00 om2 2m2 oA )

0 0 YA 0 —
i-TO = —+ + )
000 <0m2 P 0L 2m?2 oA ) %

lead to finite and tuning free computation of physical observables, such as the
Casimir energy or effective potential.
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How to reconcile the different
conclusions ?

In both approaches, m, M and A are just Lagrangian
parameters, devoid of physical meaning. Only in a tree level
analysis they are directly related to physical observables. As
soon as loop corrections are included, they become mere tools.
Thelir job is to convert a finite number of initial measurements
into predictions for new measurements of physical
observables, like particle lifetimes and cross sections. Since the
Lagrangian parameters do not carry any physical meaning,
neither does an alleged fine-tuning between them. The
“unphysicalness” of such a fine-tuning is precisely proven by
the existence of the CS method: it does not require any fine-
tuning but still arrives at the same predictions for physical
experiments.
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Conclusions

* Finite QFT formulation based on Callan-Symanzik equations does not require
any fine-tunings in the theories with well separated mass scales.

* The so-called hierarchy problem (the sensitivity of low energy physics to high
energy physics) depends on the formulation of quantum field theory, and,
therefore, is devoid of physical meaning, at least for renormalisable theories.

* The conclusions drawn about new physics in finite QFT approach are very
different from those of the standard one: “naturalness” leads to the conjecture
about the existence of new physics right above the Fermi scale, whereas the use
of a finite formulation of QFT says that no such a conclusion can be made on
physical grounds.

* Though the problem of the quantum stability of the Higgs mass and of
cosmological constant can be resolved by finite QFT, the question about the
origin of widely separated scales in Nature (such as vacuum energy, Fermi, GUT
or Planck scale) remains.
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Remarks

Our discussion can be extended in several directions:

e “Naturalness” in other approached to finite QFTs: the BPHZ (or
its modifications) and ’t Hooft formulations of finite QFT ?

e Non-renormalisable case: repeating the “6-operation” as many
times as needed?

e At the technical side, the CS method as it stands cannot work
for massless particles, such as gauge bosons. However, this
problem occurs in the infrared rather than in the UV. Therefore,
we expect that a “gauge symmetry preserving generalisation” of
the CS method does not change the hierarchy discussion. The
't Hooft method does not seem to have this problem.
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