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Higgs mass fine-tuning
• The puzzle: take the Standard Model and consider radiative corrections to 

the Higgs mass. Quadratically divergent diagrams  


lead to the term ,    - top quark Yukawa coupling,   -  the 
ultraviolet cutoff of the theory, i.e. the place where the Standard Model is 
substituted by the more fundamental theory of Nature.  Since , one 
has to fine-tune the tree Higgs mass  to cancel the radiative 
correction(s). The amount of fine-tuning:


 

δm2
H ∝ f 2

t Λ2 ft Λ

mH ≪ Λ
Mtree

ϵH =
M2

tree − δm2
H

Λ2
∼ ( 100 GeV

4πΛ )
2

≪ 1
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The similar logic can be applied to vacuum energy : 


The radiative corrections are proportional to the fourth power of the 
cutoff scale,  leading to even higher degree of fine-tuning





ϵvac

δϵvac ∝ f 4
t Λ4

ϵcc =
ϵtree
vac − δϵvac

Λ4
∼ ( 10−3 eV

Λ )
4

≪ ≪ 1
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Cosmological constant 

fine-tuning



 Similar picture. Low energy description of Nature provided by the SM:  take 
all sorts of gauge-invariant operators  of mass dimension n, constructed 
from the SM fields. Power counting:  two operators in the expansion of the 
action with respect to possible operators  come with positive powers of the 
cutoff, namely


 , 


giving the mass of the Higgs boson (h is the scalar field of the SM), and 


, 


representing the vacuum energy. The so-called fine-tuning puzzle is why the 
high energy contributions to these quantities are nearly cancelled by the 
low energy radiative corrections. 

𝒪n

𝒪2 ∝ Λ2h†h

𝒪0 = ϵvac ∝ Λ4

Wilsonian approach
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Two problems
1.  Why the physical values of the Higgs mass and of the cosmological constant are much 

smaller than the scale of new physics (cutoff ) ?


2.  Why the tree values of these parameters are so fine-tuned to the radiative corrections? 


 Naturalness:

 - These fine tunings must be avoided at any price!  


-  The cutoff  must be of the order of the Fermi scale to screen the influence of high 
energy domain from low energy domain (SUSY, composite Higgs boson, large extra 
dimensions) ?


- Cosmological evolution leading to  ?


- Environmental selection leading to  ?


Generically, these proposals lead to some kind of new physics right above the Fermi scale.

Λ

Λ

mH ≪ Λ

mH ≪ Λ
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The number of articles which mention 

“hierarchy problem” or 

“fine-tuning” or 

“naturalness”

is very large:

Credit: Oleg Ruchayskiy

https://www.prophy.science

Gildener ’76: 

Gauge symmetry hierarchies

SUSY ?

Higgs boson 

discovery? 

Large extra 

dimensions?

750 GeV 

resonance?
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This problem attracted a lot of attention

Susskind ’84: 

The Gauge Hierarchy Problem 

https://www.prophy.science


The core of the problem: quadratic (or quartic, if we talk about 
the cosmological constant) divergences, inevitably appearing in 
Feynman diagrams with loops in theories with fundamental 
scalar fields 


Renormalisation:

• Regularise UV divergent expressions


• Subtract divergences (this is exactly where fine-tunings show 
up)


• Get finite values for physical observables

Origin of the fine-tunings
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Renormalisable theory

Input:

several finite parameters

of the theory

Non-renormalisable theory

Input:

infinite number of finite 

parameters of the theory

Output:

Infinite number of

physical observables:

finite values

Multiplicative renormalisation:

infinities, regularisation, 

counter-terms,

fine-tuned cancellations
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Renormalisable theory

Input:

several finite parameters

of the theory

Non-renormalisable theory

Input:

infinite number of finite 

parameters of the theory

Output:

Infinite number of

physical observables:

finite values

Finite formulation of QFT
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Hierarchy problem in finite 
formulations of QFT?

No  infinities (quartic, quadratic, log)  in finite QFT - perhaps, 
no fine-tunings? Indeed, if all expressions are finite, the 
computation of low energy observables should not require the 
knowledge of the UV domain of the theory.


 The existence of such a formalism without large cancellations 
would challenge the “naturalness” paradigm. 


If just one particular formalism of computations in QFT without 
necessity of fine-tunings is found, it will provide a strong 
argument that the problem of quantum stability of the 
electroweak scale against radiative corrections is formalism 
dependent and thus unphysical.
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Finite formulations of QFT

Bogolubov-Parasuk-Hepp-Zimmermann 
(BPHZ)


A certain procedure, called “R-operation” 

is applied to any Feynman graph 

 before performing integrations over internal 
momenta) changing the integrand prescribed 
by the Feynman rules  to another one. The 
resulting expression is then integrated, with no 
infinities encountered. The R-operation can be 
used in both renormalisable and non-
renormalisable field theories. 
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Finite formulations of QFT

Callan-Symanzik - inspired finite 
renormalisation equations 


Usually, CS equations are represented as a tool 
for the renormalisation group investigation of 
the high energy behaviour of the renormalised 
amplitudes. However, the same equations can 
be used for the construction of the divergence-
free and thus completely finite perturbation 
theory.


13



Finite formulations of QFT
t’Hooft: Exact equations for  irreducible two-, 
three -, and four-point vertices which do not 
contain any ultraviolet infinities. The idea is that 
any divergent n-point function can be rendered 
finite by subtracting the same n-point function 
evaluated at different values for the external 
momenta. This difference can be interpreted as 
a new irreducible Feynman diagram with n+1 
external lines. Integrating these “difference 
diagrams” with respect to the external 
momenta yields renormalisation group 
equations. Potentially, these equations may 
result in a completely non-perturbative and 
divergence-free definition of the theory.


Lehmann, Symanzik and Zimmermann 


Nishijima
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Callan-Symanzik method as a 
finite approach to QFT

Ingredients for the simplest scalar theory:


• Lagrangian: 





• Postulated (but can be derived) equations for vertices with n legs  and 
new, -type vertices:


 


L = −
1
2

∂μϕ∂μϕ −
m2

2
ϕ2 −

λ
4!

ϕ4

Γ̄(n)

θ

2im2 (1 + γ) ⋅ Γ̄(n)
θ = [(m

∂
∂m

+ β
∂
∂λ ) + n ⋅ γ] Γ̄(n)

2im2 (1 + γ) ⋅ Γ̄(n)
θθ = [(m

∂
∂m

+ β
∂
∂λ ) + n ⋅ γ + γθ] Γ̄(n)

θ

Everything is finite!
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Callan-Symanzik method as a 
finite approach to QFT

Postulated (but can be derived) boundary conditions, valid in all orders of :





First order, tree approximations for 2 and 4 point functions, computed:





One-loop finite expressions, computed:





 


The unknown quantities  , and the vertices are to be out by iterative procedure from these 
equations and boundary conditions. No infinities appear at any step of computation at any loop order.

λ

[ d
dk2

Γ̄(2)(k2)]
k2=0

= i, Γ̄(2) (k2 = 0) = im2, Γ̄(4) (k2 = 0) = − iλ .

[Γ̄(2)]λ0
= i (k2 + m2) , [Γ̄(4)]λ

= − iλ

[Γ̄(4)
θ ]λ2

= −
λ2

32π2 ∑
3 opt

∫
1

0
dx

1
x(1 − x)κ2

1 + m2

[Γ̄(2)
θθ ]λ

= −
iλ

32π2

1
m2

β, γ, γθ

-operation: cuts the 

propagator in two
θ
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Fine-tunings with two mass scales

in multiplicative renormalisation

 Theory with two well separated physical mass scales, 





Standard approach, multiplicative renormalisation MS bar scheme, need to highly 
fine-tune the Lagrangian parameters m and M:


Mphys ≫ mphys

L = −
1
2

∂μϕ∂μϕ −
1
2

∂μΦ∂μΦ −
m2

2
ϕ2 −

M2

2
Φ2 −

λϕ

4!
ϕ4 −

λϕΦ

4
ϕ2Φ2 −

λΦ

4!
Φ4

Γ̄(2ϕ) = i(k2 + m2) −
iλϕm2

32π2 (1 + ln
μ2

m2 ) −
iλϕΦM2

32π2 (1 + ln
μ2

M2 )
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Absence of fine-tunings 

in finite QFT

• The same Lagrangian


• Postulated (but can be derived) equations for 
vertices   and new, -type vertices: Γ̄(n) θ
Γ̄(n)

θ,m , Γ̄(n)
θ,M , Γ̄(n)

θθ,mm , Γ̄(n)
θθ,MM , and Γ̄(n)

θθ,mM
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First CS equation: 2x1 matrix equation

<latexit sha1_base64="ru/za6hJlPJ0uN61gDFIZWJgr/Y="></latexit>
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Second CS equation: 2x2 matrix equation



Absence of fine-tunings 

in finite QFT

• Postulated (but can be derived)  boundary 
conditions, valid in all orders of : 
λ

[ d
dk2

Γ̄(2ϕ)(k2)]
k2=0

= i , Γ̄(2ϕ) (k2 = 0) = im2

[ d
dk2

Γ̄(2Φ)(k2)]
k2=0

= i , Γ̄(2Φ) (k2 = 0) = iM2
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Absence of fine-tunings 

in finite QFT

• First order, tree approximations for 2  point 
functions, computed:


• 


• One-loop finite expressions, computed:


[Γ̄(2ϕ)]λ0
= i (k2 + m2) , [Γ̄(2Φ)]λ0

= i (k2 + M2) .

[Γ̄(2ϕ)
θθ,mm]λ

= −
iλϕ

32π2

1
m2

, [Γ̄(2ϕ)
θθ,mM]λ

= 0 , [Γ̄(2ϕ)
θθ,MM]λ

= −
iλϕΦ

32π2

1
M2
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Quantum corrections to Γ(2,0)

• Begins at order λ2


• Standard zero momentum renormalisation scheme: order M2 corrections from


• Finite CS approach: begin from convergent (proportional to m-2 or M-2) 
diagrams



Quantum corrections to Γ(2,0)

• Result from integrating CS equations:


• Expand in region k2 << M2:


• Result, valid in all orders: no fine-tunings are needed, 
m and  are small, M and  are large. mphys Mphys

<latexit sha1_base64="MAQJ22RB09Nu5rj7AqmYypYkN4k="></latexit>h
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i

�2
� �2 ⇥M2 ⇥ c1 ⇥ ln


1 + c2

k2

M2

�
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Cosmological constant
 The same consideration applies to the cosmological constant  , related to 
the zero point function  (Casimir effect, effective potential, etc). New object:





Equations for :











lead to finite and tuning free computation of physical observables, such as the 
Casimir energy or effective potential.

ϵvac ≡ Λ
Γ̄(0)

Γ̄(0)
θθθ = 2 ×

1
2

× (−1)3 ∫
d4l

(2π)4 ( −i
l2 + m2 )

3

=
1

32π2

1
m2

Γ̄(0)

i ⋅ Γ̄(0)
θ = ( ∂

∂m2
+ β

∂
∂λ

+
γΛ

2m2

∂
∂Λ ) Γ̄(0)

i ⋅ Γ̄(0)
θθ = ( ∂

∂m2
+ β

∂
∂λ

+
γΛ

2m2

∂
∂Λ ) Γ̄(0)

θ

i ⋅ Γ̄(0)
θθθ = ( ∂

∂m2
+ β

∂
∂λ

+
γΛ

2m2

∂
∂Λ ) Γ̄(0)

θθ
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In both approaches, m, M and  are just Lagrangian 
parameters, devoid of physical meaning. Only in a  tree level 
analysis  they are  directly related to physical observables. As 
soon as loop corrections are included, they become mere tools. 
Their job is to convert a finite number of initial measurements 
into predictions for new measurements of  physical 
observables, like particle lifetimes and cross sections. Since the 
Lagrangian parameters do not carry any physical meaning, 
neither does an alleged fine-tuning between them. The 
“unphysicalness” of such a fine-tuning is precisely proven by 
the existence of the CS method: it does not require any fine-
tuning but still arrives at the same predictions for physical 
experiments.

λ

How to reconcile the different 
conclusions ?
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Conclusions

• Finite QFT formulation based on Callan-Symanzik equations  does not require 
any fine-tunings in the theories with well separated mass scales. 


• The so-called hierarchy problem (the sensitivity of low energy physics to high 
energy physics) depends on the formulation of quantum field theory, and, 
therefore, is devoid of physical meaning, at least for renormalisable theories. 


• The conclusions drawn about new physics in finite QFT approach are very 
different from those of the standard one: “naturalness” leads to the conjecture 
about the existence of new physics right above the Fermi scale, whereas the use 
of a finite formulation of QFT says that no such a conclusion can be made on 
physical grounds.


• Though the problem of the quantum stability of the Higgs mass and of 
cosmological constant can be resolved by finite QFT, the question about the 
origin of widely separated scales in Nature (such as vacuum energy, Fermi, GUT 
or Planck scale) remains. 
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Remarks

Our discussion can be extended in several directions: 


•“Naturalness” in other approached to finite QFTs: the BPHZ (or 
its modifications) and ’t Hooft formulations of finite QFT ?


•Non-renormalisable case:  repeating the “θ-operation” as many 
times as needed?


• At the technical side, the CS method as it stands cannot work 
for massless particles, such as gauge bosons. However, this 
problem occurs in the infrared rather than in the UV. Therefore, 
we expect that a “gauge symmetry preserving generalisation” of 
the CS method does not change the hierarchy discussion. The 
’t Hooft method does not seem to have this problem.
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