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1) Discussing inflation and its status after Planck2018 
and BICEP/Keck2021

2) Identifying simplest models, where a single parameter 
is sufficient to describe all presently available data

3) Finding “future-safe” models, which have a fighting 
chance to describe all data to be obtained in the next one 
or two decades

4) Implementing these models in supergravity and string 
theory



1) The universe is flat, W = 1. (In the mid-90’s, the consensus was 
that  W = 0.3, until the discovery of dark energy confirming inflation.)  

2) The observable part of the universe is uniform (homogeneous). 

3) It is isotropic. In particular, it does not rotate. (Back in the 80’s we 
did not know that it is uniform and isotropic at such an incredible level.)

4) Perturbations produced by inflation are adiabatic

5) Unlike perturbations produced by cosmic strings, inflationary 
perturbations lead to many peaks in the spectrum 

6) The large angle TE anti-correlation (WMAP, Planck) is a distinctive 
signature of superhorizon fluctuations (Spergel, Zaldarriaga 1997), 
ruling out many alternative possibilities



7) Inflationary perturbations should have a nearly flat (but not exactly 
flat) spectrum. A small deviation from flatness is one of the 
distinguishing features of inflation. It is as significant for inflationary 
theory as the asymptotic freedom for the theory of strong interactions
8) Inflation produces scalar perturbations and tensor perturbations
with nearly flat spectrum, and it does not produce vector 
perturbations. There are certain relations between the properties of 
scalar and tensor perturbations

10) Scalar perturbations are Gaussian. In non-inflationary models, the 
parameter fNL

local describing the level of local non-Gaussianity can be as 
large as 104, but it is predicted to be O(1) in all single-field inflationary 
models. Confirmed by Planck. Prior to the Planck2013 data release, 
there were rumors that fNL

local >> O(1), which would rule out all single 
field inflationary models 

9) In the early 80’s it seemed that inflation is ruled out because scalar 
perturbations are not observed at the expected level 10-3 required for 
galaxy formation. Thanks to dark matter, smaller perturbations are 
sufficient, and they were found by COBE.



Planck 2013: Perturbations of temperature
This is an image of quantum fluctuations produced 10-35 seconds 
after the Big Bang. These tiny fluctuations were stretched by 
inflation to incredibly large size, and now we can observe them 
using all sky as a giant photographic plate!!!





Non-inflationary HZ spectrum with ns = 1 is ruled out at a better than 6s
level, just as predicted in 1981 by Mukhanov and Chibisov. (This is an 
important prediction of inflation, similar to asymptotic freedom in QCD.)

An impressive success of inflationary theory

Agrees with predictions of the simplest 
inflationary models with accuracy  O(10-4).

Universe is flat with 
accuracy better than 10-2

Spectrum of perturbations 
is nearly flatns = 0.965± 0.004
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f local
NL = 0.91± 5
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⌦ = 1.009± 0.0018
Planck + SPT + BAO



B-modes: a special polarization pattern which can be 
produced by gravitational waves generated during inflation. 
A discovery of the gravitational waves of this type could 
provide a strong additional evidence in favor of inflation.

A non-discovery of B-modes is fine too: 
many inflationary models predict a very small 
amplitude of the gravitational waves.  

BICEP/Keck and other experiments



P.A.R. Ade et al, https://arxiv.org/pdf/2110.00483.pdf

to an eight parameter model of lensedΛCDMþ rþ dustþ
synchrotronþ noise and explore the parameter space using
COSMOMC [41] (which implements a Markov chain
Monte Carlo method). As in our previous analyses the
band power covariance matrix is derived from 499 simu-
lations of signal and noise, explicitly setting to zero terms
such as the covariance of signal-only band powers with
noise-only band powers or covariance of BICEP/Keck
noise band powers with WMAP and Planck noise band
powers (see Appendix H of BK15 and Appendix B of the
Supplemental Material [42] for details). We deal with the
differing sky coverage of the BICEP3 and BICEP2/Keck
maps as described in Appendix D of the Supplemental
Material [23]. The tensor-scalar power ratio r is evaluated
at a pivot scale of 0.05 Mpc−1, and we fix the tensor
spectral index nt ¼ 0. A COSMOMC module containing the
data and model is available for download at [43]. The
following paragraphs briefly summarize the fore-
ground model.
We include dust with amplitude Ad;353 evaluated at

353 GHz and l ¼ 80. The frequency spectral behavior
is taken as a modified black body spectrum with Td ¼
19.6 K and frequency spectral index βd. In a significant
change from the baseline analysis choices of BK15, we
remove the prior on the dust frequency spectral index which
was previously applied based on Planck data in other
regions of sky—with the improvement in the Keck

220 GHz sensitivity this prior is no longer needed. The
spatial power spectrum is taken as a power law Dl ∝ lαd

marginalizing uniformly over the (generous) range −1 <
αd < 0 [where Dl ≡ lðlþ 1ÞCl=2π]. Planck analysis
consistently finds approximate power law behavior of
both the EE and BB dust spectra with exponents
≈ − 0.4 [37,38].
We include synchrotron with amplitude Async;23 evalu-

ated at 23 GHz (the lowest WMAP band) and l ¼ 80,
assuming a simple power law for the frequency spectral
behavior Async ∝ νβs, and using a Gaussian prior βs ¼
−3.1% 0.3 taken from the analysis of WMAP 23 and
33 GHz data in Ref [44]. We note that analysis of 2.3 GHz
data from S-PASS in conjunction with WMAP and Planck
finds βs ¼ −3.2 with no detected trends with galactic
latitude or angular scale [45], and that Ref. [46] analyzed
the S-PASS and WMAP 23 GHz data and found βs ¼
−3.22% 0.06 in the BICEP2 sky patch. The spatial power
spectrum is taken as a power law Dl ∝ lαs marginalizing
over the range −1 < αs < 0 [47]. Reference [45] finds a
value at the bottom end of this range ð≈ − 1Þ from the S-
PASS data for BB at high galactic latitude.
Finally we include sync-dust correlation parameter ϵ

(called ρ in some other papers [38,45,48]). As in BK15 we
marginalize over the full possible range −1 < ϵ < 1.
We hold the lensing B-mode spectrum fixed at that

predicted for the Planck 2018 cosmological parameters
([2], Table II). Results of our baseline analysis are shown in
Fig. 4 and yield the following statistics: r0.05 ¼ 0.014þ0.010

−0.011
(r0.05 < 0.036 at 95% confidence), Ad;353 ¼ 4.4þ0.8

−0.7 μK2,
Async;23 < 1.4 μK2 at 95% confidence, and βd ¼ 1.49þ0.13

−0.12 .
For r, the zero-to-peak likelihood ratio is 0.46. Taking
1
2 ½1 − fð−2 logL0=LpeakÞ', where f is the χ2 CDF (for one
degree of freedom), we estimate that the probability to get a
likelihood ratio smaller than this is 11% if, in fact, r ¼ 0.
As compared to the previous BK15 analysis, the likelihood
curve for r tightens considerably with the peak position
shifting down slightly, and the Ad curve tightens slightly. In
addition the Async curve now peaks at zero—the weak
evidence for synchrotron we saw in BK15 is no longer
present. (Using the S-PASS data [45] we estimate that the
expectation is Async;23 ≈ 0.4 μK2 in the BICEP/Keck field,
which is consistent with our Async likelihood curve.) In the
BK15 analysis the constraint on βd was prior dominated,
but for BK18 we see that the data is able to constrain this
parameter almost as well as the prior previously did.
Interestingly the peak value selected is very close to the
mean value from Planck 2018 analysis of larger regions of
sky βd ¼ 1.53 [38].
The maximum likelihood model has parameters

r0.05 ¼ 0.011, Ad;353 ¼ 4.4 μK2, Async;23 ¼ 0.6 μK2,
βd ¼ 1.5, βs ¼ −3.0, αd ¼ −0.66, αs ¼ 0.00, and
ϵ ¼ −0.11. This model is an acceptable fit to the data
with the probability to exceed (PTE) the observed value of
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FIG. 3. Upper: the noise spectra of the BICEP3 95 GHz map
(red), the BICEP2/Keck 150 GHz map (green), and the Keck
220 GHz maps (blue). The spectra are shown after correction for
the filtering of signal which occurs due to the beam roll-off,
timestream filtering, and B-mode purification. (Note that no l2

scaling is applied.) Lower: the effective sky fraction as calculated
from the ratio of the mean noise realization band powers to their
fluctuation fskyðlÞ ¼ ð1=2lΔlÞf½

ffiffiffi
2

p
Nb'=½σðNbÞ'g2, i.e., the

observed number of B-mode degrees of freedom divided by
the nominal full-sky number. The turn down at low l is due to
mode loss to the timestream filtering and matrix purification.
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We present results from an analysis of all data taken by the BICEP2, Keck Array, and BICEP3 CMB
polarization experiments up to and including the 2018 observing season. We add additional Keck Array
observations at 220 GHz and BICEP3 observations at 95 GHz to the previous 95=150=220 GHz dataset.
TheQ=U maps now reach depths of 2.8, 2.8, and 8.8 μKCMB arcmin at 95, 150, and 220 GHz, respectively,
over an effective area of ≈600 square degrees at 95 GHz and ≈400 square degrees at 150 and 220 GHz. The
220 GHz maps now achieve a signal-to-noise ratio on polarized dust emission exceeding that of Planck at
353 GHz. We take auto- and cross-spectra between these maps and publicly available WMAP and Planck
maps at frequencies from 23 to 353 GHz and evaluate the joint likelihood of the spectra versus a
multicomponent model of lensed ΛCDMþ rþ dustþ synchrotronþ noise. The foreground model has
seven parameters, and no longer requires a prior on the frequency spectral index of the dust emission taken
from measurements on other regions of the sky. This model is an adequate description of the data at the
current noise levels. The likelihood analysis yields the constraint r0.05 < 0.036 at 95% confidence.
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Running maximum likelihood search on simulations we obtain unbiased results and find that σðrÞ ¼ 0.009.
These are the strongest constraints to date on primordial gravitational waves.

DOI: 10.1103/PhysRevLett.127.151301

Introduction.—The ΛCDM standard model of cosmol-
ogy is able to describe the observable universe in a
statistical manner using only six free parameters.
Measurements of the cosmic microwave background
(CMB) [1] are one the key pillars of this model and
now constrain its parameters with percent-level precision
(see most recently Ref. [2]).
The ΛCDM model describes how the universe evolved

from an initial high energy state ðT ≫ 1012 KÞ, and the
conditions at that time can be inferred from observations:
fractionally small, Gaussian, adiabatic perturbations with a
slightly red power law spectrum ðns ≲ 1Þ. Inflationary
theories naturally explain such conditions as the outcome
of a prephase of exponential expansion during which the
scale of the protouniverse increased by a factor of ∼e60.
Inflation makes an additional prediction which has not yet
been observed—a background of tensor perturbations, also
known as gravitational waves (see Ref. [3] for a review and
citations to the original literature). There are many specific
inflationary models and classes thereof. If we can detect or
set limits on primordial gravitational waves we can set
limits on these models [4], and probe physics at energy
scales far higher than can ever be accessed in laboratory
experiments.
A polarization pattern can be decomposed into E-mode

(gradient) and B-mode (curl) components. Under the
ΛCDM standard model the CMB polarization pattern is
mostly E mode, with a much smaller B-mode component
which arises due to gravitational deflections (lensing) of the
CMB photons after their last scattering [5]. Since primor-
dial gravitational waves will produce E modes and B
modes approximately equally it was realized in the late
1990s that the best way to search for them is to look for an
excess B-mode signal [6–8]. Additional nonprimordial B
modes are produced by astrophysical foreground emis-
sions, primarily from our own galaxy, but these have
different frequency spectra than the CMB and can be
separated from it using multifrequency measurements.
Our BICEP/Keck program first reported detection of an

excess over the lensing B-mode expectation at 150 GHz in
Ref. [9]. In a joint analysis using multifrequency data from
the Planck experiment it was shown that most or all of this
is due to polarized emission from dust in our own galaxy
([10] hereafter BKP). In Ref. ([11] hereafter BK14) we
improved the constraint using Keck Array data at 95 GHz
taken during the 2014 season, and in Ref. ([12] hereafter
BK15) we improved again adding Keck Array data at 95
and 220 GHz taken during the 2015 season. In this Letter
[hereafter BK18] we add large amounts of new data taken

by Keck Array at 220 GHz and BICEP3 at 95 GHz during
the 2016, 2017, and 2018 observing seasons. This paper
follows BK15 very closely in the methods, structure, and,
in places, even the wording, mainly just adding additional
experimental data. This improves the constraint on pri-
mordial gravitational waves parametrized by the tensor-to-
scalar ratio r by more than a factor of 2 over our previous
result to r0.05 < 0.036 at 95% confidence, setting important
additional limits on inflationary models.
Instrument and observations.—The BICEP2 receiver

observed at 150 GHz from 2010–2012 [13]. The Keck
Array was essentially five copies of BICEP2 running in
parallel from 2012–2019, initially at 150 GHz but switch-
ing over time to 95 and 220 GHz [14]. BICEP3 is a single
similar, but scaled up, receiver which commenced science
observations in the 2016 Austral winter season [15].
Whereas the BICEP2 and Keck 150 and 220 GHz receivers
each contained ≈500 bolometric detectors BICEP3 con-
tains ≈2500 detectors. The aperture size is also increased
from ≈0.25 m to ≈0.5 m. The Keck receivers were
mounted on a single telescope mount (movable platform),
while BICEP3 occupies a separate mount previously used
for BICEP2 on a nearby building. All of these telescopes
are located at the South Pole Station in Antarctica. The
mounts scan the receivers across the sky, and the cryogenic
detectors track the intensity of the incoming microwave
radiation. The detectors are arranged as interleaved
orthogonally polarized pairs in the focal planes and the
pair difference timestreams are thus measures of the
polarized emission from the sky [16]. At the South Pole
the atmosphere is exceptionally transparent and stable at
the observation frequencies ([17], Fig. 5).
BICEP2 and Keck Array both mapped a region of sky

centered at RA 0h, Dec. −57.5° with an effective area of
≈400 square degrees. BICEP3 has a larger instantaneous
field of view and hence naturally maps a larger sky area
with an effective area of ≈600 square degrees. We have
perturbed the center of the BICEP3 scan region such that
most of this additional area falls on the higher declination
side of the sky patch in an attempt to stay away from
regions where the Planck data indicates polarized dust
contamination may be higher. The BK15 dataset consisted
of 4, 17, and 2 receiver years at 95, 150, and 220 GHz,
respectively. BICEP3 is equivalent to about eight of the
Keck Array 95 GHz receivers [15] so the BK18 dataset is
equivalent to about 28, 18, and 14 Keck receiver years at
95, 150, and 220 GHz, respectively.
Maps and power spectra.—We make maps and power

spectra using the same procedures as in our previous series
of papers. The timestream data are binned into pixels on the
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BICEP3 class receiver is now operating in the 30 or 40 GHz
band and in the coming years additional receivers will be
installed at 95, 150, and 220 or 270 GHz. The system is
projected to reach σðrÞ ∼ 0.003 within five years with
delensing in conjunction with SPT3G.
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Fig. 7. Marginalized joint two-dimensional 68 % and 95 % CL regions for combinations of (✏1 , ✏2 , ✏3) (upper panels) and (✏V , ⌘V , ⇠2V )
(lower panels) for Planck TT,TE,EE+lowE+lensing (red contours), compared with Planck TT,TE,EE+lowE+lensing+BK14 (blue
contours).
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More generally:

In canonical variables

Asymptotically at large values of the inflaton

Additional information can be obtained for the hilltop models. The simplest models

V = V0(1 � �4/m4) represented by the green band in Fig. 8 of the Planck2018 data release [2]

lead to a universal prediction ns = 1�3/Ne for all sub-Planckian values of the mass parameter

m . 1. This prediction is strongly disfavored by the Planck2018 data for the number of

e-foldings Ne ⇠ 50 � 60. These models could provide a good match to the Planck data for

m & 10. However, in that case they predict post-inflationary collapse of the universe, which

cannot be avoided without a substantial modification of such models, strongly modifying their

predictions [3].

More complicated versions of the hilltop models, such as the new inflation model with the

Coleman-Weinberg potential V ⇠ 1 + �4

m4 (2 log �2

m2 � 1), are marginally compatible with the

Planck2018 data [3], though only for m � 1. Now they are strongly disfavored by the results

of the recent BICEP/Keck data release, as we show in Fig. 2.

New Inflation
(Coleman-Weinberg 
potential)

Figure 2: Models of the type of new inflation [4, 5] based on the Coleman-Weinberg hilltop potential are

marginally compatible with Planck2018 data, but strongly disfavored by the BICEP/Keck data [1].

However, one can recover all of these losses by making a relatively simple generalization

of the kinetic term of the scalar field. After this generalization, most of the improved models,

which we called “cosmological attractors,” become compatible with all presently available

inflation-related observational data, almost independently of the choice of the scalar potential

prior to the generalization.
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Then the condition V0
↵ ⇠ 10�10 reads m ⇠ 0.6 ⇥ 10�5. It is this simplest model that is shown

by the prominent vertical yellow band on Fig. 8 of the Planck2018 data release [2].

To illustrate advantages of this class of models, we show in Fig. 3 predictions of the

models with monomial potentials �2n after the modification of the kinetic term shown in (2.1).

At large ↵, predictions of all of these models coincide with the predictions shown in Fig. 1,

and these models are ruled out, but at smaller ↵ they all run towards the dark blue area

favored by the latest BICEP/Keck data release. Fig. 3 illustrates the main advantage of the

cosmological attractors: Their predictions for ns and r coincide in the small ↵ limit, nearly

independently of the choice of the potential V (�):

ns = 1 � 2

Ne
, r =

12↵

N2
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. (2.5)

These models are compatible with the presently available observational data for su�ciently

small ↵.
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The simplest example is provided by V (⇢) = V0(1 � ⇢)2. In the canonical variables it is given

by

V = V0
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For the particular case ↵ = 1 this potential coincides with the potential of the Starobinsky

model [13]. In the small ↵ limit the predictions of the E-models coincide with the predictions

of the T-models (2.5).

Fig. 4 shows a combination of predictions of the simplest T-model (2.4) and the simplest

E-model (2.8). Predictions of both of these models at large ↵ coincide with the predictions

of the model �2, and then go down into the blue area with decreasing ↵. T-model band

goes straight, E-model band first slightly bends to the right, to larger values of ns, but later

reaches the same attractor value as in the T-model. Their predictions are consistent with the

Planck/BICEP/Keck bound r < 0.036 for ↵ . 7. Note that both models can describe any

value of r ⌧ 1, all the way down to r = 0.1

1An opposite statement made in the comment on the BICEP/Keck results in [14] is based on discarding

predictions of ↵-attractors for ↵ < 1.
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Figure 2. The same potential in terms of the canonical inflaton field ' (2.2). As we see, the shape
of the potential at � ⌧ 1 practically did not change. Meanwhile the vicinity of the boundary of the
moduli space at |�| = 1 is infinitely stretched. The height of the potential V (') at ' ! ±1 coincides
with V (�) at the boundaries of the moduli space � = ±1.

single-field inflation model I do not make any attempts to address the cosmological constant
problem, I am just assuming that it is small in one of the string theory vacua. To reflect this
assumption, I appropriately uplifted the otherwise random potential. Fortunately, due to the
magic of ↵ attractors, this uplifting does not change the predictions for ns and r.

3 Two-field ↵-attractors

Now we will generalize these results for the theory of two field inflation, � and �, with the
Lagrangian

1p
�g

L =
R

2
� (@µ�)2

2(1� �2

6↵)
2
� (@µ�)2

2
� V (�,�). (3.1)

In terms of canonical fields ' with the kinetic term (@µ')2

2 , the potential is

V (',�) = V (
p
6↵ tanh

'p
6↵

,�). (3.2)

During inflation at |'| �
p
↵, one can use the asymptotic equation

V (',�)|'|�
p
6↵ ⇡ V (�,�)�=±

p
6↵ , (3.3)

which means that asymptotically V (',�) is given by the values of the original potential
V (�,�) at the boundaries of the moduli space. The same is true for the curvature of the
potential in the � direction, i.e. for the effective mass squared of the field �, which asymp-
totically approaches a constant value [23]

V�,�(',�)|'|�
p
6↵ ⇡ V�,�(�,�)�=±

p
6↵ . (3.4)

To illustrate the implications of this result, we will consider again the case 6↵ = 1 and
generate a random potential V (�,�) of the original fields � and � in the Planck size box
1 < �,� < 1, see Fig. 3. Just as in the single field case, the potential V (�,�) shown in
Fig. 3 is very steep, so it would not support slow roll inflation if both fields were canonically
normalized. (We could always generate a smooth potential with the super-Planckian field
variations, but we want to analyze the most difficult case when the potential V (�,�) is very
steep.)
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Start with the model

Switch to canonical variables

In particular, for                                the potential becomes
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This model (E-model) coincides with the Starobinsky
model for a =1. In general case these models predict 

Then the condition V0
↵ ⇠ 10�10 reads m ⇠ 0.6 ⇥ 10�5. It is this simplest model that is shown

by the prominent vertical yellow band on Fig. 8 of the Planck2018 data release [2].

To illustrate advantages of this class of models, we show in Fig. 3 predictions of the

models with monomial potentials �2n after the modification of the kinetic term shown in (2.1).

At large ↵, predictions of all of these models coincide with the predictions shown in Fig. 1,

and these models are ruled out, but at smaller ↵ they all run towards the dark blue area

favored by the latest BICEP/Keck data release. Fig. 3 illustrates the main advantage of the

cosmological attractors: Their predictions for ns and r coincide in the small ↵ limit, nearly

independently of the choice of the potential V (�):

ns = 1 � 2

Ne
, r =

12↵

N2
e

. (2.5)

These models are compatible with the presently available observational data for su�ciently

small ↵.

2.2 E-models

The second family of ↵-attractors called E-models is given by
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The simplest example is provided by V (⇢) = V0(1 � ⇢)2. In the canonical variables it is given

by

V = V0

⇣
1 � e

�
q

2
3↵'

⌘2
. (2.8)

For the particular case ↵ = 1 this potential coincides with the potential of the Starobinsky

model [13]. In the small ↵ limit the predictions of the E-models coincide with the predictions

of the T-models (2.5).

Fig. 4 shows a combination of predictions of the simplest T-model (2.4) and the simplest

E-model (2.8). Predictions of both of these models at large ↵ coincide with the predictions

of the model �2, and then go down into the blue area with decreasing ↵. T-model band

goes straight, E-model band first slightly bends to the right, to larger values of ns, but later

reaches the same attractor value as in the T-model. Their predictions are consistent with the

Planck/BICEP/Keck bound r < 0.036 for ↵ . 7. Note that both models can describe any

value of r ⌧ 1, all the way down to r = 0.1

1An opposite statement made in the comment on the BICEP/Keck results in [14] is based on discarding

predictions of ↵-attractors for ↵ < 1.
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Figure 4: The BICEP/Keck [1] figure superimposed with the predictions of the simplest ↵-attractor T-model

with the potential tanh2 'p
6↵

and E-models (yellow lines for Ne = 50, 60) with the potential
�
1 � e�

p
2
3↵ '

�2

(red lines for Ne = 50, 60).

3 Other examples of cosmological attractors

3.1 Pole inflation, D-brane inflation

↵-attractors represent a special version of a more general class of attractors, the so-called pole

inflation models [9]. It is obtained by slightly generalizing equation (2.6):
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Here the pole of order q is at ⇢ = 0 and the residue at the pole is aq. For q = 2, a2 = 3↵
2 , this

equation describes E-models of ↵-attractors, but here we consider general values of q. For

q 6= 2 one can always rescale ⇢ to make aq = 1. Just as in the theory of ↵-attractors, one can

make a transformation to the canonical variables ' and find that the asymptotic behavior

of the potential V (') during inflation is determined only by V (0) and the first derivative
dV (⇢)
d⇢ |⇢=0 . The value of ns for this family of attractors is given by
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For D5 branes and small m one has

The last potential emerges also in the model of two interacting 
fields with the flattening mechanism introduced by Dong, Horn, 
Silverstein and Westphal in 2011

In particular, for D3 branes and small m one has
Their attractor formula for the ns is given in (3.2), whereas the formula for r depends on the

parameter m in the potential. For D3 � D3 inflation for small m one has

V = V0
'4

m4 + '4
, ns = 1 � 5

3N
, r =

4m
4
3

(3N)
5
3

. (3.4)

For D5 � D5 brane inflation one has

V = V0
'2

m2 + '2
, ns = 1 � 3

2N
, r = r =

p
2 m

N
3
2

. (3.5)

In Fig. (5) we give a combined plot of the predictions of the simplest ↵-attractor models and

Dp-brane inflation for N = 50 and 60 [12].

Figure 5: A combined plot of the predictions of the simplest ↵-attractor models and Dp-brane inflation for

N = 50 and 60. From left to right, we show predictions of T-models, E-models (yellow and red lines). Then we

show predictions of Dp � Dp brane inflation with p = 3, 4, 5, 6. They are shown by purple, green, orange and

blue lines correspondingly for potentials in eq. (3.3) with k = 4, 3, 2, 1. The blue data background corresponds

to Planck 2018 results including BAO.

The potentials which appear in the pole inflation scenario may have an alternative

interpretation, not related to Dp-branes. For example, a quadratic model V ⇠ '2

m2+'2 was

proposed in [18] as an example of a flattening mechanism for the '2 potential due to the

inflaton interactions with heavy scalar fields. Similar potentials with flattening may also

appear in axion theories in the strong coupling regime [19].

Independently of their interpretation, the pole inflation models may serve as a powerful

tool for parametrization of all observational data since all data for ns and r can be sorted

out using vertical � stripes with ns = 1 � �
Ne

[11, 12]. As illustrated by Fig. (5), just a

few of such stripes may completely cover all possible values of ns and r compatible with the

observational data. This parametrization works especially well in the small r limit, which

is the top priority for parametrizing the results of the ongoing and planned search for the

inflationary gravitational waves.
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From left to right, we show predictions of T-models and E-models (yellow 
and red lines for Ne = 50, 60) and of Dp brane inflation with p = 3, 4, 5, 6 
(purple, green, orange and blue lines). These models, belonging to the 
general class of pole inflation, can describe gravitational waves all the 
way down to r =0.



Start with the model

For f = f2 this model would coincide with Higgs inflation proposed 
by Bezrukov and Shaposhnikov. Here we consider a general 
function f(f), and nevertheless the predictions at large x coincide 
with the predictions of the Higgs inflation.

Kallosh, AL, Roest 2013

3.2 ⇠-atttractors

Cosmological attractors may also appear in the theories describing non-minimal coupling of

scalar fields to gravity [20] of the form

LJp
�g

=
1

2

�
1 + ⇠f(�)

�
R � 1

2
(@�)2 � �2f2(�) . (3.6)

where f(�) is an arbitrary function. In the particular case V (�) = �2f2(�) = �2�4, these

models coincide with the Higgs inflation model [21, 22]. Examples of these inflationary models

with V (�) ⇠ �8, �6, �4, �2, �, �2/3 were studied in [20] and the ns � r plots were given, see Fig.

6. The plots start at ⇠ = 0, were there is no non-minimal coupling, and then all models are

pushed to smaller r with increasing positive ⇠. At ⇠ ! 1 all models reach the attractor point

where r ⇡ 3 ⇥ 10�3, as in the Starobinsky model.
3

� and ⇠, which can always be satisfied by suitable choice
of �. For the specific case of the �4 theory this was dis-
cussed in detail in [5].

Supergravity embedding. The non-minimal coupling
can be embedded in supergravity. We follow the set-
up of [13], which introduces two chiral multiplets with
scalar fields � and S. The former will contain the inflaton
while the latter is responsible for SUSY breaking. We
thus take the sGoldstini to be orthogonal to the inflaton,
allowing for an arbitrary scalar potential and avoiding
the restrictions of [14]. While the original proposal has a
specific Kähler potential and an arbitrary function in the
superpotential, we take the Kähler potential to depend
on ⌦(

p
2�) which will be related to the scalar potential.

Our final expressions are:

K = � 3 log[ 12 (⌦(
p

2�) + ⌦(
p

2�̄)) � 1
3SS̄ + 1

6 (� � �̄)2

+ �
(SS̄)2

⌦(
p

2�) + ⌦(
p

2�̄)
] , W = �Sf(

p
2�) , (19)

where ⌦(
p

2�) = 1 + ⇠f(
p

2�) and f(
p

2�) is a real
holomorphic function. This leads exactly to the bosonic
model discussed above upon identifying � = �/

p
2 while

S = 0. It can easily be seen that this is a consistent
truncation.

The superconformal version of this model explains the
simplicity of the Jordan frame potential in these models:
in a gauge where the conformon is fixed, the supercon-
formal potential is given by W = �Sf(

p
2 �) (in the

notation of [15, 16]). This implies that the Jordan frame
potential at S = 0, � = �/

p
2, is given by

VJ = �2
���
@W
@S

���
2

= �2f2(�) . (20)

This model generalizes the supersymmetric embedding
of the �4 theory considered in [16] to arbitrary scalar
potentials. In that specific case, one could interpolate
between a canonical Kähler potential depending on ��̄
and a shift-symmetric one depending on (� � �̄)2 by
means of ⇠, but this is not possible in the general case.

Regarding the stability of the truncation to the infla-
tionary trajectory, where three scalars are truncated out,
the masses of the four fields are given by m2

Re � = �V ,
m2

Im � = (4/3 + 2� � �)V , m2
S = (�2/3 + 6� + �)V . Up

to slow-roll corrections, one can thus stabilize all three
truncated fields with the choice � > 1/9.

This supergravity embedding goes some way towards
an understanding of the symmetries underlying the at-
tractor behavior. In particular, for ⇠ = 0 there is sym-
metry enhancement in the Kähler potential: it has a shift
symmetry in the real part of � and hence does not de-
pend on the inflaton. The same holds for any value of
⇠ when choosing the function f(

p
2�) to be a constant.

Any deviations from this will introduce a spontaneous
breaking of this symmetry.

Chaotic inflation. In this section we illustrate the
universal attractor behavior for chaotic inflation [3], with

�
2
3

�

�2

�3

�4

0.955 0.960 0.965 0.970 0.975 0.980

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

FIG. 1. The ⇠-dependence of (ns, r) on a linear and a
logarithmic scale for di�erent chaotic models with n =
(2/3, 1, 2, 3, 4, 6, 8), from right to left, for 60 e-foldings. The
points on the logarithmic scale (lower panel) correspond to
log(⇠) = (�1, . . . , 1), from top down. The convergence to the
attractor point occurs almost instantly for n � 4.

the scalar potential

VJ(�) = �2M4�n
Pl �n . (21)

Without non-minimal couplings, these have the following
cosmological observables:

nsJ = 1 � 2 + n

2N
, rJ =

4n

N
, (22)

at large N . These are specific cases of the most gen-
eral 1/N -dependence derived in [17]. The attractor be-
havior for this class is depicted in Figure 1. The cross-
over behavior between the two regimes spans a number of
decades of the non-minimal coupling ⇠, and in addition is
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eral 1/N -dependence derived in [17]. The attractor be-
havior for this class is depicted in Figure 1. The cross-
over behavior between the two regimes spans a number of
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Figure 6: Attractor trajectories on a linear and a logarithmic scale for di↵erent monomial models for

Ne = 60. In the left panel, the results of [20] are superimposed with the BICEP/Keck results represented by

Fig. 1. The points on the logarithmic scale (right panel) correspond to log ⇠ = �1, 0, 1, from top down.

A comparison between Fig. 6 for ⇠-attractors and the closely related Fig. 3 for the ↵-attractors

reveals important similarities and di↵erences. In both cases, the attractor mechanism “saves”

the monomial models, making them compatible with the data. But this happens di↵erently

for the ↵-attractors and the ⇠-attractors.

The ⇠-attractor trajectories in the left panel first go down as straight lines parallel to each

other, but then they move to the attractor point almost horizontally, spanning large range of

values of ns from 0.96 to 0.98 for r . 0.01. This makes such models more robust with respect

to future precision data on ns. On the other hand, the values of r for ⇠-attractors cannot go

much below r ⇡ 3 ⇥ 10�3. This is a crucial di↵erence as compared to ↵-attractors, which
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up of [13], which introduces two chiral multiplets with
scalar fields � and S. The former will contain the inflaton
while the latter is responsible for SUSY breaking. We
thus take the sGoldstini to be orthogonal to the inflaton,
allowing for an arbitrary scalar potential and avoiding
the restrictions of [14]. While the original proposal has a
specific Kähler potential and an arbitrary function in the
superpotential, we take the Kähler potential to depend
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up of [13], which introduces two chiral multiplets with
scalar fields � and S. The former will contain the inflaton
while the latter is responsible for SUSY breaking. We
thus take the sGoldstini to be orthogonal to the inflaton,
allowing for an arbitrary scalar potential and avoiding
the restrictions of [14]. While the original proposal has a
specific Kähler potential and an arbitrary function in the
superpotential, we take the Kähler potential to depend
on ⌦(

p
2�) which will be related to the scalar potential.

Our final expressions are:

K = � 3 log[ 12 (⌦(
p
2�) + ⌦(

p
2�̄)) � 1

3SS̄ + 1
6 (� � �̄)2

+ ⇣
(SS̄)2

⌦(
p
2�) + ⌦(

p
2�̄)

] , W = �Sf(
p
2�) , (19)

where ⌦(
p
2�) = 1 + ⇠f(

p
2�) and f(

p
2�) is a real

holomorphic function. This leads exactly to the bosonic
model discussed above upon identifying � = �/

p
2 while

S = 0. It can easily be seen that this is a consistent
truncation.

The superconformal version of this model explains the
simplicity of the Jordan frame potential in these models:
in a gauge where the conformon is fixed, the supercon-
formal potential is given by W = �Sf(

p
2�) (in the

notation of [15, 16]). This implies that the Jordan frame
potential at S = 0,� = �/

p
2, is given by

VJ = �2
���
@W
@S

���
2
= �2f2(�) . (20)

This model generalizes the supersymmetric embedding
of the �4 theory considered in [16] to arbitrary scalar
potentials. In that specific case, one could interpolate
between a canonical Kähler potential depending on ��̄
and a shift-symmetric one depending on (� � �̄)2 by
means of ⇠, but this is not possible in the general case.

Regarding the stability of the truncation to the infla-
tionary trajectory, where three scalars are truncated out,
the masses of the four fields are given by m2

Re � = ⌘V ,
m2

Im � = (4/3 + 2✏ � ⌘)V , m2
S = (�2/3 + 6⇣ + ✏)V . Up

to slow-roll corrections, one can thus stabilize all three
truncated fields with the choice ⇣ > 1/9.

This supergravity embedding goes some way towards
an understanding of the symmetries underlying the at-
tractor behavior. In particular, for ⇠ = 0 there is sym-
metry enhancement in the Kähler potential: it has a shift
symmetry in the real part of � and hence does not de-
pend on the inflaton. The same holds for any value of
⇠ when choosing the function f(

p
2�) to be a constant.

Any deviations from this will introduce a spontaneous
breaking of this symmetry.

Chaotic inflation. In this section we illustrate the
universal attractor behavior for chaotic inflation [3], with
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FIG. 1. The ⇠-dependence of (ns, r) on a linear and a
logarithmic scale for di↵erent chaotic models with n =
(2/3, 1, 2, 3, 4, 6, 8), from right to left, for 60 e-foldings. The
points on the logarithmic scale (lower panel) correspond to
log(⇠) = (�1, . . . , 1), from top down. The convergence to the
attractor point occurs almost instantly for n � 4.

the scalar potential

VJ(�) = �2M4�n
Pl �n . (21)

Without non-minimal couplings, these have the following
cosmological observables:

nsJ = 1 � 2 + n

2N
, rJ =

4n

N
, (22)

at large N . These are specific cases of the most gen-
eral 1/N -dependence derived in [17]. The attractor be-
havior for this class is depicted in Figure 1. The cross-
over behavior between the two regimes spans a number of
decades of the non-minimal coupling ⇠, and in addition is

Unlike predictions of a-attractors, predictions of x-attractors 
do not go below r = 10-3
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can describe small r all the way down to r = 0. Thus, absence of gravitational waves with

r & 3 ⇥ 10�3 would disfavor ⇠-attractors, but it would be compatible with ↵-attractors.

This di↵erence disappears if one considers a more general class of models with nonminimal

coupling of scalars to gravity

LJp
�g

=
1

2
⌦(�)R � 1

2
KJ(�)(@�)2 � VJ(�) . (3.7)

One can show that for certain relations between ⌦(�), KJ(�) and VJ(�) this theory in the

Einstein frame becomes equivalent to the theory of ↵-attractors [9]. Therefore in this more

general context one can describe any small values of r.

4 Special cases

So far we presented T- and E-models with a continuous value of ↵, which at small ↵ reach the

attractor point with cosmological predictions depending on the number of e-foldings and ↵ as

shown in (2.5). One can implement these models in the minimal N = 1 supergravity, where

the parameter 3↵ is given by 3↵ = 1
2 |RK |. Here |RK | is the curvature of Kähler geometry

[7]. In the context of the Poincaré hyperbolic disk geometry, representing an Escher disk,

R2
Esher = 3↵ defines the size of the disk [10].

Figure 7: This figure (courtesy of R. Flauger) shows the 7 Poincaré disks of the T-model of ↵-attractors as

green lines, as well as Higgs inflation, R2 inflation and fibre inflation [23].

The most interesting B-mode targets in this class of cosmological attractor models are

the ones with the discrete values of 3↵ = 7, 6, 5, 4, 3, 2, 1 [24–27]. These models of Poincaré

disks are inspired by string theory, M-theory and maximal supergravity. They are known in

cosmology community, see for example the plot of R. Flauger presented in his talk at CMB-S4

collaboration meeting in 2021. We present it here in Fig. 7.
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So far, only models with KJ = 1 have been considered,
where the parameter ⇠ was a part of the choice of the function
⌦(�) in (1.4). Now we will define a new class of theories,
which we will call special attractors. They will be defined by
the following choice of functions in (1.4):

KJ =
1

4⇠

(⌦0)2

⌦
, VJ(�) = ⌦2 U(⌦) . (3.16)

Thus we absorbed the ⇠ dependence into the factor KJ. Then
the theory (1.4) in the Einstein frame becomes

LE =
p

�g

"
R

2
� 3↵

4

✓
@⌦

⌦

◆2

� U(⌦)

#
, (3.17)

where

↵ ⌘ 1 +
1

6⇠
. (3.18)

In this theory ⌦ becomes the field variable. Its kinetic term
is exactly of the form (2.8) with a pole of order two and
no subleading corrections. However, physically this does not
correspond to the same limit: while the ↵ attractors derive
their attractor predictions from the region close to ⇢ = 0, in-
flation in the ⇠-attractors takes place at ⌦ very large. There-
fore it is natural to identify

⇢(�) = ⌦�1(�) . (3.19)

Note that a pole of order two is exactly invariant under this
redefinition and retains the same form.

In order for the kinetic energy to be well-defined, one has
to require that ↵ is positive. There are three regions of the
parameter ⇠; the condition ↵ > 0 is satisfied in the first two
of them:

• ⇠ > 0, with ↵ > 1, or

• �1 < ⇠ < � 1
6 corresponding to 0 < ↵ < 1, while

• Intermediate regions with �1/6 < ⇠ < 0 lead to a
wrong sign of the Einstein frame kinetic term.

The limiting case with ↵ = 1 can be reached either in the
limit ⇠ ! 1 or ⇠ ! �1, while ↵ = 0 is accessible via
⇠ ! �1/6 from below.

It is important to take stock of the situation at this point.
In particular, one can allow ⇠ to become negative (and ↵
to become smaller than one) at a very specific price: the
Jordan frame kinetic term (3.16) has the wrong sign. While
this could seem dangerous, for �1 < ⇠ < � 1

6 this danger is
in fact fictitious as it does not lead to negative kinetic terms
and instability in the Einstein frame.

This phenomenon is reminiscent of the Breitenlohner-
Freedman bound in Anti-de Sitter space. In that case, an

apparent instability due to a negative mass can be cured
by the non-trivial geometry provided the mass satisfies the
BF bound [13]. In our case, an apparent instability due to
a negative kinetic energy can be cured by the non-minimal
coupling in Jordan frame, provided the coe�cient 1/(4⇠) of
the negative term in (3.16) is su�ciently small such that ↵
is positive.

One can represent the theory (3.17) in terms of a canoni-
cally normalized inflaton field ' as follows:

⌦ = e
p

2
3↵' , (3.20)

and

LE =
p

�g


R

2
� 1

2
(@')2 � U

�
e
p

2
3↵'

��
(3.21)

For the special choice U(⌦) = ↵f2
⇣

1�⌦
1+⌦

⌘
, this theory coin-

cides with the class of ↵-attractors defined in (2.13), (2.14),
with VE = ↵f2

�
tanh 'p

6↵

�
. In particular, for the simplest

choice f(x) = cx, where c is some constant, one finds the
↵-generalization of the simplest T-model potential [4, 6]

V = ↵c2 tanh2 'p
6↵

, (3.22)

and for f(x) = cx
1+x , which is equivalent to the choice

VJ = c2(⌦�1)2, one finds a generalization of the Starobinsky
potential, called ↵ � � model [5]

V = ↵c2
⇣
1 � e�

p
2
3↵'

⌘2
. (3.23)

More general choices of potentials are possible, e.g. one can
add to U(⌦) corrections

�U(⌦) =
1X

i=2

ci⌦
�i =

1X

i=2

ci⇢
i . (3.24)

This results in the subleading corrections in e
p

2
3↵', which

do not a↵ect the inflationary predictions in the large-N limit.

B. Relation to induced inflation

Induced inflation is defined by (1.4) with ⌦ = ⇠f(�) an
the scalar potential given by the usual relation (1.5). As we
already mentioned, this theory is well defined (i.e. describes
gravity instead of antigravity) only for ⌦ > 0. Without
any loss of generality, one can define this class of theories
by conditions ⇠ > 0, f(�) > 0. Then, independent of the
function f(�), which in principle can be chosen arbitrary, the
inflationary predictions of this model coincide with (1.1) in
the limit of ⇠ ! +1 [8]. Moreover, in the opposite limit ⇠ !
0 the predictions approximate those of quadratic inflation,
again independent of the functional choice [10].

In the Einstein frame this theory becomes an a-attractor for 
the field W
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So far, only models with KJ = 1 have been considered,
where the parameter ⇠ was a part of the choice of the function
⌦(�) in (1.4). Now we will define a new class of theories,
which we will call special attractors. They will be defined by
the following choice of functions in (1.4):

KJ =
1

4⇠

(⌦0)2

⌦
, VJ(�) = ⌦2 U(⌦) . (3.16)

Thus we absorbed the ⇠ dependence into the factor KJ. Then
the theory (1.4) in the Einstein frame becomes
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where

↵ ⌘ 1 +
1
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. (3.18)

In this theory ⌦ becomes the field variable. Its kinetic term
is exactly of the form (2.8) with a pole of order two and
no subleading corrections. However, physically this does not
correspond to the same limit: while the ↵ attractors derive
their attractor predictions from the region close to ⇢ = 0, in-
flation in the ⇠-attractors takes place at ⌦ very large. There-
fore it is natural to identify

⇢(�) = ⌦�1(�) . (3.19)

Note that a pole of order two is exactly invariant under this
redefinition and retains the same form.

In order for the kinetic energy to be well-defined, one has
to require that ↵ is positive. There are three regions of the
parameter ⇠; the condition ↵ > 0 is satisfied in the first two
of them:

• ⇠ > 0, with ↵ > 1, or

• �1 < ⇠ < � 1
6 corresponding to 0 < ↵ < 1, while

• Intermediate regions with �1/6 < ⇠ < 0 lead to a
wrong sign of the Einstein frame kinetic term.

The limiting case with ↵ = 1 can be reached either in the
limit ⇠ ! 1 or ⇠ ! �1, while ↵ = 0 is accessible via
⇠ ! �1/6 from below.

It is important to take stock of the situation at this point.
In particular, one can allow ⇠ to become negative (and ↵
to become smaller than one) at a very specific price: the
Jordan frame kinetic term (3.16) has the wrong sign. While
this could seem dangerous, for �1 < ⇠ < � 1

6 this danger is
in fact fictitious as it does not lead to negative kinetic terms
and instability in the Einstein frame.

This phenomenon is reminiscent of the Breitenlohner-
Freedman bound in Anti-de Sitter space. In that case, an

apparent instability due to a negative mass can be cured
by the non-trivial geometry provided the mass satisfies the
BF bound [13]. In our case, an apparent instability due to
a negative kinetic energy can be cured by the non-minimal
coupling in Jordan frame, provided the coe�cient 1/(4⇠) of
the negative term in (3.16) is su�ciently small such that ↵
is positive.

One can represent the theory (3.17) in terms of a canoni-
cally normalized inflaton field ' as follows:
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For the special choice U(⌦) = ↵f2
⇣

1�⌦
1+⌦

⌘
, this theory coin-

cides with the class of ↵-attractors defined in (2.13), (2.14),
with VE = ↵f2

�
tanh 'p

6↵

�
. In particular, for the simplest

choice f(x) = cx, where c is some constant, one finds the
↵-generalization of the simplest T-model potential [4, 6]

V = ↵c2 tanh2 'p
6↵

, (3.22)

and for f(x) = cx
1+x , which is equivalent to the choice

VJ = c2(⌦�1)2, one finds a generalization of the Starobinsky
potential, called ↵ � � model [5]

V = ↵c2
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p
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3↵'
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More general choices of potentials are possible, e.g. one can
add to U(⌦) corrections

�U(⌦) =
1X

i=2

ci⌦
�i =

1X

i=2

ci⇢
i . (3.24)

This results in the subleading corrections in e
p

2
3↵', which

do not a↵ect the inflationary predictions in the large-N limit.

B. Relation to induced inflation

Induced inflation is defined by (1.4) with ⌦ = ⇠f(�) an
the scalar potential given by the usual relation (1.5). As we
already mentioned, this theory is well defined (i.e. describes
gravity instead of antigravity) only for ⌦ > 0. Without
any loss of generality, one can define this class of theories
by conditions ⇠ > 0, f(�) > 0. Then, independent of the
function f(�), which in principle can be chosen arbitrary, the
inflationary predictions of this model coincide with (1.1) in
the limit of ⇠ ! +1 [8]. Moreover, in the opposite limit ⇠ !
0 the predictions approximate those of quadratic inflation,
again independent of the functional choice [10].
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So far, only models with KJ = 1 have been considered,
where the parameter ⇠ was a part of the choice of the function
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the following choice of functions in (1.4):
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, VJ(�) = ⌦2 U(⌦) . (3.16)

Thus we absorbed the ⇠ dependence into the factor KJ. Then
the theory (1.4) in the Einstein frame becomes

LE =
p

�g

"
R

2
� 3↵

4

✓
@⌦

⌦

◆2

� U(⌦)

#
, (3.17)

where

↵ ⌘ 1 +
1

6⇠
. (3.18)

In this theory ⌦ becomes the field variable. Its kinetic term
is exactly of the form (2.8) with a pole of order two and
no subleading corrections. However, physically this does not
correspond to the same limit: while the ↵ attractors derive
their attractor predictions from the region close to ⇢ = 0, in-
flation in the ⇠-attractors takes place at ⌦ very large. There-
fore it is natural to identify

⇢(�) = ⌦�1(�) . (3.19)

Note that a pole of order two is exactly invariant under this
redefinition and retains the same form.

In order for the kinetic energy to be well-defined, one has
to require that ↵ is positive. There are three regions of the
parameter ⇠; the condition ↵ > 0 is satisfied in the first two
of them:

• ⇠ > 0, with ↵ > 1, or

• �1 < ⇠ < � 1
6 corresponding to 0 < ↵ < 1, while

• Intermediate regions with �1/6 < ⇠ < 0 lead to a
wrong sign of the Einstein frame kinetic term.

The limiting case with ↵ = 1 can be reached either in the
limit ⇠ ! 1 or ⇠ ! �1, while ↵ = 0 is accessible via
⇠ ! �1/6 from below.

It is important to take stock of the situation at this point.
In particular, one can allow ⇠ to become negative (and ↵
to become smaller than one) at a very specific price: the
Jordan frame kinetic term (3.16) has the wrong sign. While
this could seem dangerous, for �1 < ⇠ < � 1

6 this danger is
in fact fictitious as it does not lead to negative kinetic terms
and instability in the Einstein frame.

This phenomenon is reminiscent of the Breitenlohner-
Freedman bound in Anti-de Sitter space. In that case, an

apparent instability due to a negative mass can be cured
by the non-trivial geometry provided the mass satisfies the
BF bound [13]. In our case, an apparent instability due to
a negative kinetic energy can be cured by the non-minimal
coupling in Jordan frame, provided the coe�cient 1/(4⇠) of
the negative term in (3.16) is su�ciently small such that ↵
is positive.

One can represent the theory (3.17) in terms of a canoni-
cally normalized inflaton field ' as follows:
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For the special choice U(⌦) = ↵f2
⇣

1�⌦
1+⌦
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, this theory coin-

cides with the class of ↵-attractors defined in (2.13), (2.14),
with VE = ↵f2

�
tanh 'p

6↵

�
. In particular, for the simplest

choice f(x) = cx, where c is some constant, one finds the
↵-generalization of the simplest T-model potential [4, 6]

V = ↵c2 tanh2 'p
6↵

, (3.22)

and for f(x) = cx
1+x , which is equivalent to the choice

VJ = c2(⌦�1)2, one finds a generalization of the Starobinsky
potential, called ↵ � � model [5]

V = ↵c2
⇣
1 � e�
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2
3↵'
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More general choices of potentials are possible, e.g. one can
add to U(⌦) corrections

�U(⌦) =
1X

i=2

ci⌦
�i =

1X

i=2

ci⇢
i . (3.24)

This results in the subleading corrections in e
p

2
3↵', which

do not a↵ect the inflationary predictions in the large-N limit.

B. Relation to induced inflation

Induced inflation is defined by (1.4) with ⌦ = ⇠f(�) an
the scalar potential given by the usual relation (1.5). As we
already mentioned, this theory is well defined (i.e. describes
gravity instead of antigravity) only for ⌦ > 0. Without
any loss of generality, one can define this class of theories
by conditions ⇠ > 0, f(�) > 0. Then, independent of the
function f(�), which in principle can be chosen arbitrary, the
inflationary predictions of this model coincide with (1.1) in
the limit of ⇠ ! +1 [8]. Moreover, in the opposite limit ⇠ !
0 the predictions approximate those of quadratic inflation,
again independent of the functional choice [10].

In these models one can also describe any small values of r, all the 
way down to r = 0.



Fig from R. Flauger talk at CMB-S4 

7 discrete targets for a-attractors (Kallosh, AL, Roest 2014, Ferrara, 
Kallosh 2016) and fibre inflation (Cicoli, Burgess, Quevedo 2008) are 

among the main targets for B-mode searches, along with the 
Starobinsky model and Higgs inflation
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BICEP/Keck2021 do not claim a discovery of the gravitational waves. The 
error bars of their result                                are too large,                    .
However, it is quite intriguing that the yellow and red dashed lines, which 
show the predictions of the largest option a = 7/3, go straight through the 
center of the dark blue ellipse favored by Planck/BICEP/Keck data.                            
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1 Introduction

The new data release from BICEP/Keck considerably strengthened bounds on the tensor to

scalar ratio r [1]: r0.05 = 0.014+0.010
�0.011 (r0.05 < 0.036 at 95% confidence). The main results

are illustrated in [1] by a figure describing combined constraints on ns and r, which we

reproduce here in Fig. 1. These new results have important implications for the development

of inflationary cosmology. In particular, the standard version of natural inflation as well as

the full class of monomial potentials V ⇠ �n are now strongly disfavored.

Figure 1: BICEP/Keck results for ns and r [1]. The 1� and 2� areas are represented by dark blue and light

blue colors. The purple region shows natural inflation, and the orange band corresponds to inflation driven by

scalar field with canonical kinetic terms and monomial potentials.
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Running maximum likelihood search on simulations we obtain unbiased results and find that σðrÞ ¼ 0.009.
These are the strongest constraints to date on primordial gravitational waves.

DOI: 10.1103/PhysRevLett.127.151301

Introduction.—The ΛCDM standard model of cosmol-
ogy is able to describe the observable universe in a
statistical manner using only six free parameters.
Measurements of the cosmic microwave background
(CMB) [1] are one the key pillars of this model and
now constrain its parameters with percent-level precision
(see most recently Ref. [2]).
The ΛCDM model describes how the universe evolved

from an initial high energy state ðT ≫ 1012 KÞ, and the
conditions at that time can be inferred from observations:
fractionally small, Gaussian, adiabatic perturbations with a
slightly red power law spectrum ðns ≲ 1Þ. Inflationary
theories naturally explain such conditions as the outcome
of a prephase of exponential expansion during which the
scale of the protouniverse increased by a factor of ∼e60.
Inflation makes an additional prediction which has not yet
been observed—a background of tensor perturbations, also
known as gravitational waves (see Ref. [3] for a review and
citations to the original literature). There are many specific
inflationary models and classes thereof. If we can detect or
set limits on primordial gravitational waves we can set
limits on these models [4], and probe physics at energy
scales far higher than can ever be accessed in laboratory
experiments.
A polarization pattern can be decomposed into E-mode

(gradient) and B-mode (curl) components. Under the
ΛCDM standard model the CMB polarization pattern is
mostly E mode, with a much smaller B-mode component
which arises due to gravitational deflections (lensing) of the
CMB photons after their last scattering [5]. Since primor-
dial gravitational waves will produce E modes and B
modes approximately equally it was realized in the late
1990s that the best way to search for them is to look for an
excess B-mode signal [6–8]. Additional nonprimordial B
modes are produced by astrophysical foreground emis-
sions, primarily from our own galaxy, but these have
different frequency spectra than the CMB and can be
separated from it using multifrequency measurements.
Our BICEP/Keck program first reported detection of an

excess over the lensing B-mode expectation at 150 GHz in
Ref. [9]. In a joint analysis using multifrequency data from
the Planck experiment it was shown that most or all of this
is due to polarized emission from dust in our own galaxy
([10] hereafter BKP). In Ref. ([11] hereafter BK14) we
improved the constraint using Keck Array data at 95 GHz
taken during the 2014 season, and in Ref. ([12] hereafter
BK15) we improved again adding Keck Array data at 95
and 220 GHz taken during the 2015 season. In this Letter
[hereafter BK18] we add large amounts of new data taken

by Keck Array at 220 GHz and BICEP3 at 95 GHz during
the 2016, 2017, and 2018 observing seasons. This paper
follows BK15 very closely in the methods, structure, and,
in places, even the wording, mainly just adding additional
experimental data. This improves the constraint on pri-
mordial gravitational waves parametrized by the tensor-to-
scalar ratio r by more than a factor of 2 over our previous
result to r0.05 < 0.036 at 95% confidence, setting important
additional limits on inflationary models.
Instrument and observations.—The BICEP2 receiver

observed at 150 GHz from 2010–2012 [13]. The Keck
Array was essentially five copies of BICEP2 running in
parallel from 2012–2019, initially at 150 GHz but switch-
ing over time to 95 and 220 GHz [14]. BICEP3 is a single
similar, but scaled up, receiver which commenced science
observations in the 2016 Austral winter season [15].
Whereas the BICEP2 and Keck 150 and 220 GHz receivers
each contained ≈500 bolometric detectors BICEP3 con-
tains ≈2500 detectors. The aperture size is also increased
from ≈0.25 m to ≈0.5 m. The Keck receivers were
mounted on a single telescope mount (movable platform),
while BICEP3 occupies a separate mount previously used
for BICEP2 on a nearby building. All of these telescopes
are located at the South Pole Station in Antarctica. The
mounts scan the receivers across the sky, and the cryogenic
detectors track the intensity of the incoming microwave
radiation. The detectors are arranged as interleaved
orthogonally polarized pairs in the focal planes and the
pair difference timestreams are thus measures of the
polarized emission from the sky [16]. At the South Pole
the atmosphere is exceptionally transparent and stable at
the observation frequencies ([17], Fig. 5).
BICEP2 and Keck Array both mapped a region of sky

centered at RA 0h, Dec. −57.5° with an effective area of
≈400 square degrees. BICEP3 has a larger instantaneous
field of view and hence naturally maps a larger sky area
with an effective area of ≈600 square degrees. We have
perturbed the center of the BICEP3 scan region such that
most of this additional area falls on the higher declination
side of the sky patch in an attempt to stay away from
regions where the Planck data indicates polarized dust
contamination may be higher. The BK15 dataset consisted
of 4, 17, and 2 receiver years at 95, 150, and 220 GHz,
respectively. BICEP3 is equivalent to about eight of the
Keck Array 95 GHz receivers [15] so the BK18 dataset is
equivalent to about 28, 18, and 14 Keck receiver years at
95, 150, and 220 GHz, respectively.
Maps and power spectra.—We make maps and power

spectra using the same procedures as in our previous series
of papers. The timestream data are binned into pixels on the
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BICEP/Keck hope to reach 
s(r) = 0.003 within 5 years.



Inflation in supergravity

Main problem:

Canonical Kahler potential is

Therefore, the potential blows up at large |F|, and slow-roll 
inflation is impossible:

Too steep, no inflation…



Superpotential must be a REAL holomorphic function. (We must be sure that 
the potential is symmetric with respect to Im     , so that Im      = 0 is an 
extremum (then one should check that it is a minimum). The Kahler potential is 
any function of the type

The potential as a function of the real part of       at X = 0 is
�

FUNCTIONAL FREEDOM  in choosing inflationary potential

Kallosh, A.L. 2010,      Kallosh, A.L., Rube, 2010

V = |f(�)|2
� �
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W = X f(�)
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K((�� �̄)2, XX̄)

This method and its generalizations are especially powerful if X is 
a nilpotent field, X2=0. 

Antoniadis, Dudas, Ferrara, Sagniotti 2014 
Ferrara, Kallosh, A.L. 2014



Consider a theory with a Kahler potential

and superpotential

<latexit sha1_base64="9jboKfx7MMLFEp/5Od90CzH3PPQ="></latexit>

K(T, T ) = K0(T, T ) +
F 2
X

F 2
X + Vinfl(T, T )

XX

Here X is a nilpotent field, and
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(T ) ⌘ K0(T, T )|T!T
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W = (W0 + FXX) e�(T )/2

Then the potential along the direction                        is given by 
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T = T = t
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Vtotal(T ) = ⇤+ Vinfl(T, T )|T=T=t

and the cosmological constant is 
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⇤ = F 2
X � 3W 2

0

Model-building Paradise
Kallosh, A.L, Roest, Yamada 1705.09247;  
Gunaydin, Kallosh, A.L, Yamada 2008.01494,
Kallosh, A.L, Wrase, Yamada 2108.08491, 2108.08492
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W (T ) = (W0 + FXX)
p
2T
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Vinfl = m2(1� T )(1� T )

<latexit sha1_base64="LzwVZS4v58S1mtbs/I9FDhyCqL4="></latexit>

K(T, T ) = �3↵ log(T + T ) +
F 2
X

F 2
X + Vinfl(T, T )

XX

In canonical variables, along the real T flat direction one has the a-attractor 
potential

<latexit sha1_base64="J1pcibSr5r8KtJ0qvjz47Hco0nk="></latexit>

Vtotal(�) = ⇤+m2
⇣
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p
2
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The same results remain true in the theory with many moduli Ti
if we add to the superpotential any function                    such that 

In the absence of the nilpotent field X, this theory would describe 
supersymmetric Minkowski flat directions, but in our construction 
the potential along the flat (inflaton) directions is given by 

<latexit sha1_base64="wcQxL4rdGvSVG3UO+zM9alf0bO0="></latexit>

W (I)(Ti) = 0 , @TjW
(I)(Ti) = 0
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Ti = T i = tialong the direction
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Vtotal(Ti) = ⇤+ Vinfl(Ti, T i)|Ti=Ti=ti

Importantly, this potential does NOT depend on the value of the 
superpotential outside of the flat inflaton directions. 

This allows to disentangle, sequester, dynamics of inflation from 
the large energy scale encoded in .  
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IIB string theory: STU model

Superpotential due to Aldazabal, 
Camara, Font and Ibanez, 2006 

Tadpole cancellation: Bianchi Identities in 10D supergravity with local sources 

A Tadpole cancellation

We consider type IIB string theory compactified on the T6

Z2⇥Z2
orientifold with O3/O7-planes

and geometric and non-geometric fluxes. In the conventions of [8] the superpotential W can

have terms of order 0, 1, 2, 3, 4, 5 in the fields and is given by
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The are a variety of tadpole cancellation conditions and Bianchi Identities that the fluxes are

required to satisfy. Some of them potentially require the presence of local sources like D3, D7,

NS7 or I7 branes. Below is the full list with reference to their derivation in [8] (see also [18]) .
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#
. (A.5)

– 18 –

A Tadpole cancellation

We consider type IIB string theory compactified on the T6

Z2⇥Z2
orientifold with O3/O7-planes

and geometric and non-geometric fluxes. In the conventions of [8] the superpotential W can

have terms of order 0, 1, 2, 3, 4, 5 in the fields and is given by

W =e0 + i
3X
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+ imU1U2U3

+ S

"
ih0 �

3X

I=1

aIUI +
3X

I=1

āI
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QH � PF = 0 constraints: (4.32)-(4.35) in [8] for I 6= J 6= K 6= I

h̄0hJ + āIbIJ + āJ b̄KJ � aK b̄KJ + mfJ � qIgIJ � qJgJJ � eK ḡKJ = 0, (A.6)

h0h̄J + aI b̄IJ + aJ b̄JJ � āKbKJ � e0f̄J � eI ḡIJ � eJ ḡJJ � qKgKJ = 0, (A.7)

h̄0bKJ + āI b̄JJ + āJ b̄IJ � aK h̄J + mgKJ � qI ḡJJ � qJ ḡIJ � eK f̄J = 0, (A.8)

h0b̄KJ + aIbJJ + aJbIJ � āKhJ � e0ḡKJ � eIgJJ � eJgIJ � qKfJ = 0. (A.9)

QQ = 0 constraints: (3.30)-(3.33) in [8] for I 6= J 6= K 6= I

�bIIbJK + b̄KIhK + hI b̄KK � bJIbIK = 0, (A.10)

�b̄II b̄JK + bKI h̄K + h̄IbKK � b̄JI b̄IK = 0, (A.11)

�bII b̄IJ + b̄JIbJJ + hI h̄J � bKI b̄KJ = 0, (A.12)

b̄IIbIJ � bJI b̄JJ + hI h̄J � bKI b̄KJ = 0. (A.13)

PP = 0 constraints: (4.16)-(4.19) in [8] for I 6= J 6= K 6= I

�gIIgJK + ḡKIfK + fI ḡKK � gJIgIK = 0, (A.14)

�ḡII ḡJK + gKI f̄K + f̄IgKK � ḡJI ḡIK = 0, (A.15)

�gII ḡIJ + ḡJIgJJ + fI f̄J � gKI ḡKJ = 0, (A.16)

ḡIIgIJ � gJI ḡJJ + fI f̄J � gKI ḡKJ = 0. (A.17)

QP + PQ = 0 constraints: (4.24)-(4.27) in [8] for I 6= J 6= K 6= I

bKK ḡKJ � hK f̄J � b̄JKgJJ + bIK ḡIJ + gKK b̄KJ � fK h̄J � ḡJKbJJ + gIK b̄IJ = 0, (A.18)

bKKgIJ � hK ḡJJ � b̄JKfJ + bIKgKJ + gKKbIJ � fK b̄JJ � ḡJKhJ + gIKbKJ = 0, (A.19)

b̄KK ḡIJ � h̄KgJJ � bJK f̄J + b̄IK ḡKJ + ḡKK b̄IJ � f̄KbJJ � gJK h̄J + ḡIK b̄KJ = 0, (A.20)

b̄KKgKJ � h̄KfJ � bJK ḡJJ + b̄IKgIJ + ḡKKbKJ � f̄KhJ � gJK b̄JJ + ḡIKbIJ = 0. (A.21)

B Symmetries of Superpotentials and Nambu-Goldstone supermultiplets

Nambu-Goldstone theorem was proven in global supersymmetry theories in [23]. It was shown

that for each massless supermultiplet there is a symmetry of the superpotential. We present

here the generalization of this theorem to supergravity.

The fermion spin 1/2 mass matrix in Minkowski vacua in supergravity with W = W,i = 0

is

mij(T
k)
���
W=W,i=0

= e
K
2 W,ij(T

k), i = 1, . . . , M. (B.1)
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Seven chiral superfields

Example of a flux superpotential satisfying tadpole cancellation conditions with 
supersymmetric Minkowski flat directions

1 flat direction S = T1 = T2 = T3 = U1 = U2 = U3

derive all seven Poincaré disks cosmological models. We consider type IIB string theory setups

having seven moduli chiral superfields (S, TI , UI) where I = 1, 2, 3.

ns
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Figure 1: ↵-attractor benchmarks for T-models (left panel) and E-models (right panel). The
predictions are shown for the number of e-foldings in the range 50 < Ne < 60.

Each of the seven moduli has the hyperbolic geometry as its target space geometry,1

which can realize ↵-attractors with 3↵ = 1,

K = �
3X

I=1

ln(TI + T I)� ln(S + S)�
3X

I=1

ln(UI + U I) . (1.2)

For inflationary cosmology, however, we would like to stabilize all but a real single scalar field,

the inflaton �. We do not need to have only one inflaton. In the 4-2-1 model we

have 3 inflatons, and it is OK. In particular, we will show how to remove the unwanted

moduli still remaining after Step I from the low energy theory, while keeping the moduli space

geometry interesting. Schematically, we do the following two step model building:

(S, TI , UI)| {z }
7 chiral superfields

Wflux=====)
Step I

(T(A))| {z }
A=1,or1,2,3

X, W0=====)
Step II

� (1.3)

Our aim of Step I is to find string theoretically motivated models where we stabilize as

many moduli as possible, while keeping the inflaton candidates massless. We find two classes

of models: The first one has after Step I a single massless superfield, whose moduli space

geometry realizes 3↵ = 7. At Step II we uplift it to the top Poincaré disk target in Fig. 1. The

second model has three unfixed moduli at Step I. They have the geometries of 3↵ = 4, 2, 1,

respectively. At Step II this model will be uplifted to produce all Poincaré disk targets in

Fig. 1 above.

1
A target space geometry here is defined by a Kähler potential K = �3↵ ln(T+T̄ ). The case K = � ln(T+T̄ )

in (1.2) means 3↵ = 1.
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W = (S � U1)(T1 � U2) + (S � U2)(T2 � U3) + (S � U3)(T3 � U1)
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Vtotal(�) = ⇤+m2
⇣
1� e�

p
2
7�
⌘2

After uplifting of this flat direction and transformation to canonical variables, 
one finds a-attractor inflationary potential with 3a = 7 and r = 10-2
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Dashed lines show the value r ~ 0.01 for 3a = 7, the top 
value of a in a-attractor models inspired by M-theory and 

string theory



1. Many predictions of inflationary theory have been tested and confirmed 
during the last 40 years. 

2. Some inflationary models, such as the Starobinsky model, the Higgs 
inflation, and a broad class of a-attractors, can describe all inflation-related 
observational data by a single parameter responsible for the amplitude of 
scalar perturbations. Predictions of a-attractors are very stable with 
respect to significant modifications of the inflaton potential. These models, 
as well as more general versions of pole inflation, can describe any small 
value of r, all the way down to r = 0.

3. We constructed supergravity models where phenomenology of inflation 
is sequestered, protected from the Planckian energy scale physics which 
can be associated with M-theory or string theory. 

4. BICEP/Keck results are moving very close to the range necessary for 
testing these models.
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