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Our goals:

1) Discussing inflation and its status after Planck2018
and BICEP/Keck2021

2) ldentifying simplest models, where a single parameter
IS sufficient to describe all presently available data

3) Finding “future-safe” models, which have a fighting
chance to describe all data to be obtained in the next one
or two decades

4) Implementing these models in supergravity and string
theory



Testing predictions of inflation

1) The universe is flat, Q = 1. (In the mid-90’s, the consensus was
that Q2 = 0.3, until the discovery of dark energy confirming inflation.)

2) The observable part of the universe is uniform (homogeneous).

3) It is isotropic. In particular, it does not rotate. (Back in the 80’s we
did not know that it is uniform and isotropic at such an incredible level.)

4) Perturbations produced by inflation are adiabatic

5) Unlike perturbations produced by cosmic strings, inflationary
perturbations lead to many peaks in the spectrum

6) The large angle TE anti-correlation (WMAP, Planck) is a distinctive
signature of superhorizon fluctuations (Spergel, Zaldarriaga 1997),
ruling out many alternative possibilities



7) Inflationary perturbations should have a nearly flat (but not exactly
flat) spectrum. A small deviation from flatness is one of the
distinguishing features of inflation. It is as significant for inflationary
theory as the asymptotic freedom for the theory of strong interactions

8) Inflation produces scalar perturbations and tensor perturbations
with nearly flat spectrum, and it does not produce vector
perturbations. There are certain relations between the properties of
scalar and tensor perturbations

9) In the early 80’s it seemed that inflation is ruled out because scalar
perturbations are not observed at the expected level 103 required for
galaxy formation. Thanks to dark matter, smaller perturbations are
sufficient, and they were found by COBE.

10) Scalar perturbations are Gaussian. In non-inflationary models, the

parameter fy '°¢@ describing the level of local non-Gaussianity can be as
large as 10%, but it is predicted to be O(1) in all single-field inflationary
models. Confirmed by Planck. Prior to the Planck2013 data release,

there were rumors that fy 1°%@ >> O(1), which would rule out all single
field inflationary models



Planck 2013: Perturbations of temperature

This is an image of quantum fluctuations produced 10-3° seconds
after the Big Bang. These tiny fluctuations were stretched by
inflation to incredibly large size, and now we can observe them
using all sky as a giant photographic plate!!!




Planck 2015: TT spectrum (blue dots) and
predictions of inflationary theory (red line)
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Inflation and Planck 2018

Universe is flat with

Q — 1009 1 00018 accuracy better than 102

Planck + SPT + BAO

Spectrum of perturbations
Ng — 0965 1 0.004 is nearly flat

Non-inflationary HZ spectrum with ng = 1 is ruled out at a better than 6
level, just as predicted in 1981 by Mukhanov and Chibisov. (This is an
important prediction of inflation, similar to asymptotic freedom in QCD.)

local 091 +5 Agrees with predictions of the simplest
NL — Yo+ — inflationary models with accuracy O(107%).

An impressive success of inflationary theory



Can we test inflation even better ?

B-modes: a special polarization pattern which can be
produced by gravitational waves generated during inflation.
A discovery of the gravitational waves of this type could
provide a strong additional evidence in favor of inflation.

BICEP/Keck and other experiments

A non-discovery of B-modes is fine t00:
many inflationary models predict a very small
amplitude of the gravitational waves.
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Improved constraints on primordial gravitational

waves using Planck, WMAP, and BICEP/Keck

observations through the 2018 observing season

P.A.R. Ade et al, https://arxiv.org/pdf/2110.00483.pdf
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Tensor-to-scalar ratio (79.002)
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Planck 2018: Not all theories fit the data

Ol-attractors, Starobinsky, Higgs, fiber inflation, D-brane inflation
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One can fit all Planck data by a polynomial,
with inflation starting at the Planck density

Destri, de Vega, Sanchez, 2007

2 12 : ]
m ¢ 5 Nakayama, Takahashi and Yanagida, 2013
V = (1 — CL¢ + b¢ ) Kallosh, AL, Westphal 2014
2 Kallosh, AL, Roest, Yamada 1705.09247
Vv No problem with initial conditions

3 observables: A, n, r ®
3 parameters: m, a, b /
Example: m =102, a=0.12, o
b=0.29

But it is better to have models which require
no more than 1 or 2 free parameters


https://arxiv.org/abs/1705.09247

List of models favored by Planck2018

Inflationary model Potential V(¢) Parameter range Ax*? InB
R+ R2/(6M) A% (1 = e V2o’

Power-law potential M, 28 =26
Power-law potential /lM o0 25  -1.9
Power-law potential AM 413 104  —45
Power-law potential AMZ, ¢* 223 -7.1
Power-law potential AMp ¢ 409 -19.2
Power-law potential Ag* .. 89.1 -33.3
Non-minimal coupling A" + E6*R)2 4 <log, & <4 3.1 -1.6
Natural inflation A*[1 +cos(¢/1)] 0.3 < log,,(f/Mp) < 2.5 94  -42
Hilltop quadratic model N (1= +...) 0.3 < log,y(ua/Mp) <4.85 1.7 =2.0
Hilltop quartic model A (1= i +..) —2 <log,o(us/Mp) <2 03 —14
D-brane inflation (p = 2) AN (1 =g, 97 + ... —6 < log,o(up2/Mp)) <03  —2.3 1.6
D-brane inflation (p = 4) N (1= gy 197 +..) —6 < log,o(ups/Mp) <03 =22 0.8
Potential with exponential tails A*[1 — exp (—gp/Mp) + .. ] -3 <log,nq <3 -0.5 -1.0
Spontaneously broken SUSY A*[1 + aylog (¢/Mp) + .. ] -25<logga, <1 9.0 -5.0

1
E-model (n = 1) A* {1 — exp[ ( 3a Mpl) l} -2 <log at <4 02 -1.0
1
E-model (n = 2) A* {1 — exp[ ( 3a2Mp1) l} -2 < logya; <4 -0.1 0.7
1
T-model (m = 1) A* tanh®™ [q&( 6a] Mp]) l -2 <log,ya] <4 -0.1 0.1
-1
T-model (m = 2) A* tanh®” [(p( 6a§MP1) l 2 <log,gal < 4 ~04 0.1




Subsequent developments:

Inflationary model Potential V(¢) Parameter range Ax? InB
R + R2/(6M?) A4 (1 = e V2o )’
wer-law potential AM)P 3 28 =26
Powgr-law potential /1M31¢ 25 -1.9
Power-Ww potential AMEP ¢ 104  -45
Power-law wotential AMIZ,lgbZ 223 7.1
Power-law potdytial AMp ¢ 409 -19.2
Power-law potentl Ag* . 89.1 -33.3
Non-minimal coupling A" + EP*R/2 4 <log, & <4 3.1 -1.6
~Natesadaflation A*[1 + cos (¢/f)] 0.3 < log,,(f/Mp) < 2.5 9.4 -4.2
7 ic model AN (1= +...) 0.3 < log,o(u2/Mp) <485 17 =20
Hilltop quarttcTodek— AN (1= ¢* b +..) —2 <log(us/Mp) <2  —03 —14
D-brane inflation (p = 2) A (1=, /e7 +..) —6 < logy(tp2/Mp) < 03 =23 1.6
D-brane inflation (p = 4) N (1= g fe? + ) ~6 < log,o(ups/Mp) < 03 —2.2 0.8
Potential with exponential tails A*[1 —exp(—qo/Mp) + .. ] -3 <log,pq <3 -0.5 -1.0
‘SpomtaTToTsty-brefen-SESY A*[1 + ay log (¢/Mpy) + .. .] -2.5<log,ya, < 1 90 -5.0
1
E-model (n = 1) A* {1 - exp[ ( 3ak Mpl) }} -2 < log,,af <4 0.2 -1.0
1
E-model (n = 2) A* {1 - exp[ ( 3a Mpl) l} -2 < log, a5 < 4 -0.1 0.7
1
T-model (m = 1) A? tanh?™ V( 6a| Mpl) ] -2 <logyai <4 -0.1 0.1
-1
T-model (m = 2) A? tanth [¢( 6agMp1) ] -2 < loglo ag <4 -04 0.1




What is the meaning of a-attractors?

Kallosh, AL, Roest 2014
Start with the simplest chaotic inflation model

1 1 1 1
T L — TR 2042 — Zm2p2
Ve S LA YL
Modify its kinetic term
1, 1 1 0¢° 1 5
\/—gﬁ_ﬁR_§(1_g_i)2_§m¢
p

Switch to canonical variables ¢ = v 6a tanh ——

V6o

The potential becomes
V = 3am? tanh? £

V6o

This model (T-model) is consistent with observational
data for m ~ 107 and any value of o smaller than O(7).



What is the meaning of a-attractors?

More generally:

L R (8Mq5)2
= — V(g
In canonical variables
2
L — E _ ((‘9“—@ _ V(w/GOé tanhi)

v=g9 2 2 vba

Asymptotically at large values of the inflaton
_./2
Vip) =Vy—2v6a V) e Via¥

Here Vj = 8¢V]¢:\/@ This factor can be absorbed in the
redefinition (shift) of the field. At small o, values of n, and r
depend only on V, and a, not on the shape of V(¢).

2 12
ng=1——, r -

N. - N2



r0.002

0,255

0.20 -

0:15 -

0. 10~

0014 [------

0.00 -
0.95

0.96

Planck TT,TE,EE+lowE+lensing

0.97
Ns

T-models for ¢?

+BK18+BAO

AR

0.98

1
0.99 1.00



Inflation with Random Potentials and
Cosmological Attractors




(au 90)2
5

In terms of canonical fields ¢ with the kinetic term the potential is




o-attractor mechanism makes
the potentials flat, which makes
inflation possible, which makes
the universe flat



E-models of a-attractors

_ Kallosh, AL, Roest 2014
Start with the model

L R 3a (0p)? B

= T V
Switch to canonical variables
L R 1 5 /2
N e 5(09)" = Ve ).

In particular, for V(p) = Vo(1 — p)* the potential becomes
/2 \2
V=W (1 —e 30‘(P)

This model (E-model) coincides with the Starobinsky
model for o =1. In general case these models predict

2 12cx
nS:1—ﬁ, T:N2
(&

€
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General pole inflation

Galante, Kallosh, AL, Roest 2014
Start with the model

L R a, (0p)?
==y V()
For g >2 and small r one has an attractor regime with

b q
N — 1 _—— p—
S Ne 9 /B q . 1
Some of these models have interpretation in terms of Dp brane
inflation (KKLTI models) bvali, Tye, 1998, Kachru, Kallosh, A.L., Maldacena,

McAllister, Trivedi 2003, Kallosh, A.L. Yamada 1811.01023

k mk
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General pole inflation

In particular, for D3 branes and small m one has

A 4
2 5} 4m 3
m* + ¢t 3N (3N)3

V=W

For D5 branes and small m one has

2
", 3 V2m
V=V L
O m2 4 2 s 2N, g N%
(&

The last potential emerges also in the model of two interacting
fields with the flattening mechanism introduced by Dong, Horn,
Silverstein and Westphal in 2011
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From left to right, we show predictions of T-models and E-models (yellow
and red lines for N, = 50, 60) and of Dp brane inflation with p =3, 4, 5, 6
(purple, green, orange and blue lines). These models, belonging to the
general class of pole inflation, can describe gravitational waves all the

way down to r =0.



¢-attractors and other models with non-

minimal coupling to gravity
Kallosh, AL, Roest 2013

Start with the model

L 1 1
= (1 R — —(09)* — \*f?
= = 51+ &) R = 5(00) = X 2(9)
For f = $? this model would coincide with Higgs inflation proposed
by Bezrukov and Shaposhnikov. Here we consider a general

function f(¢), and nevertheless the predictions at large & coincide
with the predictions of the Higgs inflation.

2 12
neg=1— —, r

N, - N2
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Relation between a-attractors and models with
non-minimal coupling to gravity

Galante, Kallosh, AL, Roest 2014
Consider with the model

Ly 1 1 2 _
== 2Q(¢)R QKJ(gb)(@gb) V(o)
with N2
K= 287 v = 2o

p— 4—€ Q )

In the Einstein frame this theory becomes an a-attractor for
the field Q

R 3a [00\°
Lr=+vV—g 51 (Q) - U(Q)
with _1_|_1
o= 6¢

In these models one can also describe any small values of r, all the
way down tor = 0.



Special cases

Fig from R. Flauger talk at CMB-S4
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7 discrete targets for a-attractors (Kallosh, AL, Roest 2014, Ferrara,
Kallosh 2016) and fibre inflation (Cicoli, Burgess, Quevedo 2008) are
among the main targets for B-mode searches, along with the

Starobinsky model and Higgs inflation



Benchmarks for T-models and E-models
T-models Vi = V,tanh? —~—

Voo
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String theory interpretation of 7 discrete targets for a-attractors

Ferrara, Kallosh 1610.04163. Kallosh, A.L., Wrase, Yamada 1704.04829



BICEP/Keck2021 do not claim a discovery of the gravitational waves. The
error bars of their result 795 = 0.01470519 are too large, o(r) = 0.009 .

However, it is quite intriguing that the yellow and red dashed lines, which

show the predictions of the largest option a = 7/3, go straight through the
center of the dark blue ellipse favored by Planck/BICEP/Keck data.
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Inflation in supergravity

Main problem:

V() =" (Kg3 [DaW[* = 3|[W[%)

Canonical Kahler potentialis X = ®®

Therefore, the potential blows up at large |®|, and slow-roll
inflation is impossible:

V ~ el®l?

Too steep, no inflation...



A general solution

Kallosh, A.L. 2010, Kallosh, A.L., Rube, 2010

W=Xf(®)

Superpotential must be a REAL holomorphic function. (We must be sure that
the potential is symmetric with respect to Im @, so that Im ¢ =0 is an
extremum (then one should check that it is a minimum). The Kahler potential is

any function of the type - -
K(®— @)%, XX)

The potential as a function of the real part of @ at X =0 s
V =1[f(®)[7
FUNCTIONAL FREEDOM in choosing inflationary potential

This method and its generalizations are especially powerful if X is

a nilpotent field, X2=0.
Antoniadis, Dudas, Ferrara, Sagniotti 2014

Ferrara, Kallosh, A.L. 2014



Model-building Paradise

Kallosh, A.L, Roest, Yamada 1705.09247;
Gunaydin, Kallosh, A.L, Yamada 2008.01494,
Kallosh, A.L, Wrase, Yamada 2108.08491, 2108.08492

Consider a theory with a Kahler potential
_ _ 2
K(T,T) = Ko(T,T) + S
F)Q( -+ ‘/inﬂ (T7 T)

and superpotential
‘¢f3=1([@Q)—%_FB()()ff_K(TU/Z
Here X is a nilpotent field, and
K(T) = Ko(T,T)
Then the potential along the direction T'=T =t is given by
%otal(T) = A + Vvinﬂ (Ta T)
and the cosmological constant is

A =F5 —3W§

|T—>T

|T:T:t



Example: single-field o-attractor

_ _ F2 _
K(T,T) = —3alog(T +T) + = X XX
X + Vvinﬂ (T7 T)
W(T) = (Wo + FxX)V2T
Vien =m*(1-T)1-T)

In canonical variables, along the real T flat direction one has the a-attractor
potential

Viotal (8) = A +m? (1 - e_\/sza¢)2




Towards sequestered inflation

The same results remain true in the theory with many moduli T;
if we add to the superpotential any function W0 (T;) such that

wI(T) =0, o WIN(T) =0

along the direction 1; =1, =,

In the absence of the nilpotent field X, this theory would describe
supersymmetric Minkowski flat directions, but in our construction
the potential along the flat (inflaton) directions is given by

%otal( ) A _|_ vaﬂ (T’L7 T )|Ti:Ti:ti

Importantly, this potential does NOT depend on the value of the
superpotential W) (T}) outside of the flat inflaton directions.

This allows to disentangle, sequester, dynam|cs of inflation from
the large energy scale encoded in wd )(Tz).



lIB string theory: STU model
Kallosh, A.L, Wrase, Yamada 2108.08492

3 3

W =eg + 1 Z erUr — ZCH UlgiUg + imU U2U3
I=1 I=1
3 B U ULU
. _ 10203 T
5 | ho - ; arlr + ; ar—g,— —hothlUs Superpotential due to Aldazabal,
3 3 3 U 3 Camara, Font and Ibanez, 2006
. T 1V2U3 T
+ ZTI —ihy — Z Usbsr + Z ibyr 7, + hiU1UU3 | — SZ frTy
=1 J=1 J=1 I=1
3 3 UL UsUs 3
+ Z igJ[SUJT]+ Z QJ]ST] —iSUlengf]T[.
1,J=1 1,J=1 J =1

Tadpole cancellation: Bianchi Identities in 10D supergravity with local sources

. ) 3 hohy + arbry + ajbgy — axbiy +mfs — ar91s — 41957 — ex g =0,

Nps =16 -5 lmho —coho +_(arar + 615”)} : hohy 4 azbry +ajbyy — axbry —eofs — ergry — esgss — axgrg =0,

, - hobgj + arbyy +asbry — aghy +mgxs — qrgss — qs9rs — ex fr =0,

Nxsr, = % [hofz —hofr =Y _(asgs1 — asgr) hobrey +arbyy + asbry —axhy — eogxs — er9s5 — esgr; — qx fr = 0.
J=1

3

1 f _
Niz, = —3 leoff —mfr + E (gr971 + ngJI)]
J=1

—9119JK + gx1fk + f19xKk — 97191k = 0,
—g1197K + 9x1.fKx + f195x — 911915 = 0,
—g11915 + 3195 + fr.fr — 9x19x5 =0,
911915 — 91977 + f1fr — 9x19x5 = 0.
—bribyk + brrhg + hibxx — byrbrx =0, brxgrs — hifr—bixgrs + brxgrs + gxxbrs — fxhy — Gixbss + grxbry =0,
—brrbyx + brrhi + hibgx — byrbrx =0,
—brrbry +byrbyy + hihy — bgrbry =0,

brrbry —byrbyy + hrhy — brrbry = 0.

brrgrs — higss —birfr +bikgrs + gxbrs — fxbrs — Goxhs + grixbrs =0,
brkGrs — hxgrs — by f1+bixgrs + Grxbrs — frbrs — grchy + Grbiy =0,

brrgrg — hif1 —bikgrs +brxgrs + Gxxbrs — fxhy — grxbys + Grbry = 0.



Type |lIB string theory and sequestered inflation

Kallosh, A.L, Roest, Yamada 2108.08491, 2108.08492

Seven chiral superfields (S, 77, Ur) where I =1,2,3.

Example of a flux superpotential satisfying tadpole cancellation conditions with
supersymmetric Minkowski flat directions

W=(S—-U)(Ty —Us)+ (S —Us)(1T5 — Us) + (S — Us3) (15 — Uy)
1 flat direction S =T, =15, =715 =U; = Uy = Us;

After uplifting of this flat direction and transformation to canonical variables,
one finds o-attractor inflationary potential with 3c. =7 and r = 102

Viotal(®) = A + m? (1 — e_\/gﬁb)Q ﬁ

2L
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Dashed lines show the value r ~ 0.01 for 3oL = 7, the top

value of a in o—attractor models inspired by M-theory and
string theory



Conclusions:

1. Many predictions of inflationary theory have been tested and confirmed
during the last 40 years.

2. Some inflationary models, such as the Starobinsky model, the Higgs
inflation, and a broad class of a-attractors, can describe all inflation-related
observational data by a single parameter responsible for the amplitude of
scalar perturbations. Predictions of a-attractors are very stable with
respect to significant modifications of the inflaton potential. These models,
as well as more general versions of pole inflation, can describe any small
value of r, all the way down to r = 0.

3. We constructed supergravity models where phenomenology of inflation
is sequestered, protected from the Planckian energy scale physics which
can be associated with M-theory or string theory.

4. BICEP/Keck results are moving very close to the range necessary for
testing these models.
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