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• Metastable Q-balls

• Decay rate of metastable Q-balls

• Many-particle resonances: general theory

• Helium-3 droplets



Model

• Consider a complex scalar field theory 
 
   ,  
 
    

• attractive two-body interaction, repulsive three-body

• This model has Q-balls (nontopological solitons)

ℒ = |∂μϕ |2 − V(ϕ)

V(ϕ) = m2 |ϕ |2 − λ |ϕ |4 + λ6 |ϕ |6



V. Rubakov, Classical Gauge Fields. Bosonic Theories



Existence of Q-balls

“We will see that in this model 
Q-balls exist when the function 
 

                  

 
has a minimum at ”

V( |Φ | )
|Φ |2

|Φ | ≠ 0



• Finite chemical potential:  
 
    
 
Effective potential 
 
       

ℒ = | (∂0 − iμ)ϕ |2 − | ⃗∇ ϕ |2 − V(ϕ)

Veff(ϕ) = (m2 − μ2) |ϕ |2 − λ |ϕ |4 + λ6 |ϕ |6

V(ϕ)
|ϕ |2 = m2 − λ |ϕ |2 + λ6 |ϕ |4



Q-balls

• 1st order phase transition between vacuum and and 
a finite-density liquid state

• Large number of boson: form a finite density “bag’’

•
• for a large enough bag (large enough N) gain in 

volume energy overwhelms loss in surface tension

• But what happens if N is not large enough?

E = −
4π
3

R3ε + 4πR2σ



Nonrelativistic limit
• For simplicity, consider the nonrelativistic limit 

   

• Minimize the energy  
 

    

 

at fixed number of particles  

• Variational ansatz:   

ℒ = iψ†∂tψ −
| ⃗∇ ψ |2

2m
+

g
4

|ψ |4 −
g6

6
|ψ |6

H = ∫ dx ( | ⃗∇ ψ |2

2m
−

g
4

|ψ |4 +
g6

6
|ψ |6 )

N = ∫ dx |ψ |2

ψ =
N

(2πξ2)3/2
exp(−

r2

4ξ2 )
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energy range), the ground state in a harmonic trap has
energy � = 4.27272 for ` = 1 and � = 4.66622 for ` = 0.
The width of a near-threshold resonance then behaves as

�(E) ⇠
(
E1.77272, ` = 1,

E2.16622, ` = 0.
(2)

In the case of neutrons, this behavior should hold for
the trineutron resonance if the energy of the resonance is
between ~2/mna2 and ~2/mnr20 where a and r0 are the
scattering length and e↵ective range of the nn scattering,
respectively (numerically, this range is between 0.1 MeV
and 5 MeV). For a resonance with energy smaller than
~2/mna2 ⇠ 0.1 MeV, the behavior of � is now dictated
by the ground-state energy of three free particles in the
harmonic potential, which is 11

2 for ` = 1 and 13
2 for

` = 0. We find � ⇠ E3 and � ⇠ E4 for these two cases.
Of course, it is not guaranteed that a near-threshold
three-neutron resonance exists in the real world [15, 16],
but such a resonance may exist if a su�ciently strong
three-body attraction is added to the forces between neu-
trons [17].

For a four-neutron resonance with energy in the regime
~2/mna2 ⌧ E ⌧ ~2/mnr20 (which appears if su�ciently
strong four-body attraction is added [18]), the behavior
of the width is controlled by the energy of the ground
state of four unitarity fermions in a spherical harmonic
trap, which was numerically determined to be � ⇡ 5.0
[19–25], so � ⇠ E2.5. At energies much lower than
~2/mna2 the behavior becomes E11/2.

Weakly coupled bosonic droplets.—To gain intuition,
let us start with the problem of metastable droplets of
bosons with small negative scattering length and e↵ective
three-body repulsion [26, 27], from which one can gain
insights onto the bahavior of many-body resonances. The
Hamiltonian of the model reads

H[ ] =

Z
dx

✓
|r |2

2
� g

4
| |4 + G

6
| |6

◆
(3)

In the regime G/g4 � 1 droplets contain a large number
of bosons and can be found by minimizing the functional
H[ ] at fixed number of particles. Solving the problem
numerically, we find that H has a local minimum with
positive energy for N1 < N < N0 where

N1 ⇡ 189.4
G1/2

g2
, N0 ⇡ 240.4

G1/2

g2
. (4)

One can visualize the metastable droplet as the local min-
imum of the function that gives the energy as a function
of the size of the droplet (Fig. 1).

The decay of a metastable droplet is described by an
instanton, i.e., a solution to the equation of motion in
Euclidean time, The instanton can be found mostly an-
alytically for N near N1 or N0. For N = N1, there

FIG. 1. Energy of the droplet as function of size for three
values of .

is a flat direction in the functional space of the droplet
density profiles. For N > N1, moving along this direc-
tion towards larger droplet size ⇠ one enconters a poten-
tial barrier as shown in Fig. 1. For small N � N1 the
width �⇠ of the barrier shrinks as �⇠ ⇠ (N � N1)1/2

and vanishes at N = N1. In this regime one can calcu-
late the tunneling amplitude using WKB approximation
for the e↵ective action in collective coordinate ⇠ with po-
tential U(⇠) ⇠ N

⇥
�⇠(⇠ � ⇠eq)2 � (⇠ � ⇠eq)3

⇤
which has a

metastable minimum at ⇠ = ⇠eq and a point of exit from
the “tunnel” at ⇠ = ⇠eq +�⇠ shown in Fig.1. The imag-
inary action for classically forbiden tunnelling is given

by SI ⇠
R ⇠eq+�⇠
⇠eq

d⇠
p
NU(⇠) ⇠ (�⇠)5/2 resulting in the

exponentially suppressed decay rate:

� = c2 exp

"
�c1N1

✓
N �N1

N1

◆5/4
#

(5)

where c1 = · · · and c2 = . . . [].
Field theory approach.—When the energy of the res-

onance is small, its decay can be described within the
framework of a low-energy e↵ective field theory. Let  
be the field describing the resonance, and  a are the par-
ticles that constitute this resonance (we allow the latter
to be of di↵erent species). The e↵ective field theory de-
scribing the system is

L =  †
✓
i@t +

r2

2m 

◆
 + L[ a] + µ0 

† 

+ g(O† + †O), (6)

where L[ a] is the Lagrangian of nonrelativistic confor-
mal field theory (NRCFT) [6] of the  -particles (the sim-
plest version of a NRCFT is a free field theory), O is a
(composite) operator with some dimension � in the the-
ory described by L( a) g and µ0 are some parameters.
The simplest example of O is O =  N in the case where



Q-ball “phase diagram”

• What is the lifetime of a metastable Q-ball?

• we need to find the instanton (bounce) solution

Q-ball
metastable

stable 
Q-ballno Q-balls

N0N1

240.4
g6

g2189.4
g6

g2

see also Levkov, Nugaev, Popescu 2017



Almost unstable Q-ball
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is a flat direction in the functional space of the droplet
density profiles. For N > N1, moving along this direc-
tion towards larger droplet size ⇠ one enconters a poten-
tial barrier as shown in Fig. 1. For small N � N1 the
width �⇠ of the barrier shrinks as �⇠ ⇠ (N � N1)1/2

and vanishes at N = N1. In this regime one can calcu-
late the tunneling amplitude using WKB approximation
for the e↵ective action in collective coordinate ⇠ with po-
tential U(⇠) ⇠ N
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which has a

metastable minimum at ⇠ = ⇠eq and a point of exit from
the “tunnel” at ⇠ = ⇠eq +�⇠ shown in Fig.1. The imag-
inary action for classically forbiden tunnelling is given

by SI ⇠
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exponentially suppressed decay rate:
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where c1 = · · · and c2 = . . . [].
Field theory approach.—When the energy of the res-

onance is small, its decay can be described within the
framework of a low-energy e↵ective field theory. Let  
be the field describing the resonance, and  a are the par-
ticles that constitute this resonance (we allow the latter
to be of di↵erent species). The e↵ective field theory de-
scribing the system is

L =  †
✓
i@t +

r2

2m 

◆
 + L[ a] + µ0 

† 

+ g(O† + †O), (6)

where L[ a] is the Lagrangian of nonrelativistic confor-
mal field theory (NRCFT) [6] of the  -particles (the sim-
plest version of a NRCFT is a free field theory), O is a
(composite) operator with some dimension � in the the-
ory described by L( a) g and µ0 are some parameters.
The simplest example of O is O =  N in the case where

quantum mechanics of 1 d.o.f.

Γ ∼ exp[−cN( N1 − N
N )

5/4

]
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where c1 = · · · and c2 = . . . [].
Field theory approach.—When the energy of the res-

onance is small, its decay can be described within the
framework of a low-energy e↵ective field theory. Let  
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where L[ a] is the Lagrangian of nonrelativistic confor-
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(composite) operator with some dimension � in the the-
ory described by L( a) g and µ0 are some parameters.
The simplest example of O is O =  N in the case where

Qualitatively: tunneling under a  potential1/R2

SE = ∫ dR 2M(V(R) − E) ∼ N ln
Rmax
Rmin

Γ ∼ e−2SE ∼ ( E
E0 )

cN

c = ?



Euclidean equation of motion
•
• Go to imaginary time , 

ψ = eiθf

t = − iτ θ = iφ

8

Going to Euclidean space

t = �i⌧, ✓ = i' (50)

we have iS ! �SE where

SE =

Z
d⌧ dx
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The equations of motion are

@⌧ (f
2) +r· (f 2r') = 0 (52)

@⌧'+
(r')2

2
+

r2f

2f
= 0 (53)

One can check that the following configuration is a solution

f =

p
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(2⇡⌧)3/4
exp
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4
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Note that ' corresponds to a “Hubble expansion,” r' = x/(2⌧).

A more general ansatz is

f =

p
N

⇡3/4⇠3/2(⌧)
exp
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' =
⌘(⌧)

⇠(⌧)
+ �(⌧) (57)

which is consistent with the equations of motion and leads to

⇠̇ � 2⌘ = 0 (58)

⌘̇ +
1

2⇠3
= 0 (59)

�̇ � 3

2⇠2
= 0 (60)

The first two equations coincide with the equation of motions coming from the Eucliean

action

SE = 3N

Z
d⌧
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Action: logarithmic integral:  
3N
2 ∫

dR
R

=
3N
2

ln
Rmax
Rmin

width:  Γ ∼ e−2S ∼ ( E
E0 )

3N/2

( )V = 0



Lessons learned so far

• Bound state of N bosons does not disappear right 
away if its energy becomes positive 
instead it remains a resonance 

• Resonance is narrow  for small  if N is large

• Questions:

• What happens at smaller N? say N=3 or N=4?

• is resonance narrow at small energy?

• if yes, what is  ?

• (N=2: bound state simply disappears, no resonance)

Γ ≪ E E

Γ(E)



Width of resonance at 
small N

• For small N, classical instanton calculation is not 
available

• But we can still find the width of the resonance at 
low energy

• Imagine that the interaction can be tuned, N-body 
bound state disappears: energy crosses 0 
   What is the width as function of energy  ?Γ(E)



Effective field theory

• When the energy of the resonance is small: low-
energy effective field theory

• vertex 

• decay rate determined by phase space 
 

• reproduces instanton calculation at large N, but 
valid at small N as well (only for small )

• N=3:  , narrow resonance

gΨ†ϕN

Γ ∼ ∫
N

∏
a=1

dpa g2δ(∑ pa)δ(∑
p2

a

2m
− E) ∼ E

3N
2 − 5

2

E

Γ ∼ E2 ≪ E



Fermion droplets

• For a fermonic droplet: no semiclassical instanton 
calculation

• Behavior of width can still be found by EFT

• Vertex:  
  = 

• Result: ,     

•  = ground state energy of N fermions in harmonic 
potential of unit frequency

gΨ† ψ ∂xψ ∂yψ ∂zψ ∂2
xψ ∂x∂yψ ∂x∂zψ…

gΨ†ON[ψ]

Γ(E) ∼ EΔ− 5
2 Δ = dim[ON]

Δ



Helium droplets

• Helium has 2 isotopes: He-4 and He-3

• both are self-bound liquids at zero temperature in the 
thermodynamic limit

• Helium-4 droplets are bound for any number of atoms

• but He-3 droplets are stable only for 

• numerical estimate: 

N ≥ N0

20 < N0 < 40



Helium-3 droplets

VOLUME 84, NUMBER 6 P HY S I CA L R EV I EW LE T T ER S 7 FEBRUARY 2000

TABLE I. Occupation numbers for configurations in the 1f2p active shell in Cartesian coor-
dinates giving rise to wave functions invariant under 90± rotations, as a function of the number
of atoms of a given sz .

Orbitals n ! 10 n ! 9 n ! 7 n ! 6 n ! 4 n ! 3 n ! 1

x3 1 1 0 0 1 1 0
y3 1 1 0 0 1 1 0
z3 1 1 0 0 1 1 0

x2y 1 1 1 1 0 0 0
x2z 1 1 1 1 0 0 0
y2x 1 1 1 1 0 0 0
y2z 1 1 1 1 0 0 0
z2x 1 1 1 1 0 0 0
z2y 1 1 1 1 0 0 0
xyz 1 0 1 0 1 0 1

our approach with the work of Pandharipande et al. [4],
which is the only previous microscopic determination of
3He drops. This work considered only closed-shell cases,
obtaining the energy value 4.12 6 0.14 K (compared with
ours, 3.44 6 0.05 K) for the system with N ! 20 atoms,
and 21.44 6 0.08 K (ours is 22.55 6 0.07 K) for N !
40 atoms. Note that this is the total energy of the system
and not the energy per particle; in fact, the binding energies
are very small compared with the experimental value of
the uniform 3He liquid, E!N ! 22.473 K [16], showing
that we are very close to the stability threshold. It should
be mentioned that the calculations of Ref. [4] include a
three-body Jastrow correlation in addition to the two-body
Jastrow term and the backflow effects. The gain in energy

TABLE II. Binding energy (in K) determined at the JCI3 ap-
proximation for several 3HeN drops as a function of the number
of spin-up (N") and spin-down (N#) atoms. Results are given for
the two Aziz potentials HFDHE-2 [10] and HFD-B(HE) [11].

N N" N# Sz HFDHE-2 HFD-B(HE)

40 20 20 0 22.55 6 0.07 23.90 6 0.07
39 20 19 1!2 21.87 6 0.09 23.17 6 0.10
38 19 19 0 21.05 6 0.11 22.29 6 0.11
37 20 17 3!2 20.42 6 0.08 21.62 6 0.09
36 20 16 2 0.06 6 0.09 21.09 6 0.09
36 19 17 1 0.30 6 0.10 20.86 6 0.10
35 19 16 3!2 0.76 6 0.08 20.33 6 0.09
34 20 14 3 1.13 6 0.06 0.09 6 0.06
34 17 17 0 1.71 6 0.06 0.67 6 0.06
33 20 13 7!2 1.49 6 0.09 0.56 6 0.09
33 19 14 5!2 1.58 6 0.08 0.66 6 0.09
33 17 16 1!2 2.07 6 0.09 1.15 6 0.10
32 19 13 3 1.92 6 0.09 1.04 6 0.09
32 16 16 0 2.68 6 0.07 1.81 6 0.08
31 20 11 9!2 2.24 6 0.07 1.42 6 0.07
31 17 14 5!2 2.46 6 0.09 1.62 6 0.09
30 20 10 5 2.15 6 0.09 1.35 6 0.09
30 19 11 4 2.53 6 0.07 1.73 6 0.07
30 17 13 2 2.82 6 0.06 2.02 6 0.06
30 16 14 1 2.89 6 0.06 2.09 6 0.07
20 10 10 0 3.44 6 0.05 3.01 6 0.05

of our approach indicates that the CI way of introducing
the three-body correlations is more effective than the usual
way of introducing them through a Jastrow factor. The
situation is similar to what we obtained for 4He drops
[7], where our JCI3 energies are better than Jastrow VMC
calculations with triplet correlations, being comparable to
DMC results.
In Table II we present also the results obtained with the

modern Aziz potential HFD-B(HE) [11]. DMC calcula-
tions using this force reproduce the experimental measure-
ments for both 4He [17] and 3He liquids [18], so we believe
our calculations to be real predictions for droplets. The
number of particles of the smallest bound system turns out
to be less than or equal to 35, a number higher than the
value of 29 found in a DF plus shell-model calculation
[6]. Here it should be mentioned that we are obtaining up-
per bounds and that we use wave functions without good
angular momentum quantum numbers. There are some ex-
ceptions to the last comment in the calculations presented:
the closed-shell systems "N" ! 20, N# ! 20# and "10, 10#
have obviously L ! 0 and S ! 0. Also our trial function
for "20, 19# has L ! 3 and S ! 1!2 (a f-shell hole state),
and the "20, 10# is a pure L ! 0 and S ! 5 system. The
other cases have a spin equal to or larger than the value
quoted in the table for Sz and a mixture of orbital angular
momentum states. In conclusion, almost all quoted val-
ues could be improved by substituting the simple product
of spin-up and spin-down Slater determinants by adequate
linear combination of open-shell Slater determinants.
The last result which emerges from our calculations is

the preference of the system for a wave function with the
maximum value of the spin S. There are some systems
in which our way of constructing the trial functions gives
several configurations with different values of Sz . It can
be seen in Table II that for a given number of atoms N , the
lowest energy is reached for the configurations having the
maximum value of Sz , even considering statistical errors.
This result gives support to the predictions of Ref. [6]. The
preference for high values of the spin bears some similarity
with the familiar Hund’s rule for atomic systems.
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Metastable He-3 droplets

• Let  be the minimal number of He-3 atoms that 
can form a bound droplet  
   ,  

• Then droplet of  atoms is metastable

• but cannot decay by emitting one atom: 
    

• The droplet can only decay by “explosion” into 
free particles

• How long the droplet lives?

N0

E(N0) < 0 E(N0 − 1) > 0

N0 − 1

E(N0 − 2) > E(N0 − 1)



Energy dependence

• Let’s assume  (smallest in literature), 
consider a droplet with 28 atoms

• Ground state of 28 atoms in harmonic potential 
 

     

•
• , :  life time  age of Universe

• but will become shorter for 27-, 26-atom droplets

N0 = 29

Δ = 2 ×
3
2

+ 6 ×
5
2

+ 12 ×
7
2

+ 8 ×
9
2

= 96

Γ ∼ ( E
E0 )

Δ−5/2

= ( E
E0 )

93.5

E ∼ 1 K E0 ∼ 40 K ≫



• There exist metastable He-3 droplets of  
atoms with lifetimes ranging between fraction of 
nanosecond and the age of the Universe

• A more precise statement is difficult to make

O(10)



Conclusion

• Metastable multiparticle resonances exist in 
various contexts in physics

• Behavior of the width at small energy is power-law 
with a known power

• Helium-3 metastable droplets exist, decay by 
explosion into free atoms


