The Three Jewels in the Crown of the LHC

The Wolfgang Pauli Centre for Theoretical Physics DESY, Hamburg 10 November 2021 Yossi Nir Weizmann Institute

Plan of lecture

Prologue: CERN, LHC, ATLAS/CMS

The first jewel: An elementary spin-0 particle

The second jewel: Why the weak interaction is short range

The third jewel: How the τ -lepton, t-quark, and b-quark gain their masses

Epilogue: New questions, More Jewels, My own work

Prologue: CERN, LHC, ATLAS

Prologue: CERN, LHC, ATLAS/CMS

The first jewel: An elementary spin-0 particle

The second jewel: Why the weak interaction is short range

The third jewel: How the τ -lepton, t-quark, and b-quark gain their masses

Epilogue: New questions, More Jewels, My own work

- Established in 1954 with the mission to
 - Provide a unique range of particle accelerator facilities that enable research at the forefront of human knowledge
 - Perform world-class research in fundamental physics
 - Unite people from all over the world to push the frontiers of science and technology for the benefit of all

The LHC

- Started on 2008
- A 27-kilometer ring
- Two high-energy proton beams travel at close to the speed of light before they are made to collide
- Superconducting magnets kept at -271.3^o
- 4×10^7 collisions/second (10⁷sec/year, 25 years)
- Four particle detectors: ATLAS, CMS, LHCb, ALICE

Multi-Messenger

The Higgs Discovery

The first jewel

Prologue: CERN, LHC, ATLAS/CMS

The first jewel: An elementary spin-0 particle

The second jewel: Why the weak interaction is short range

The third jewel: How the τ -lepton, *t*-quark, and *b*-quark gain their masses

Epilogue: New questions, More jewels, My own work

The first jewel

The discovery of an elementary spin-0 particle

- The first and only particle of this type to have been discovered
- The relevant processes:
 - $-h \to \gamma \gamma$ $-h \to ZZ^* \to 4\ell$

Elementary Particles Pre-2012

Matter Particles

Force Carriers

particle	spin	color	charge	particle	spin	color	charge
e,μ,τ	1/2	(1)	-1	A^0	1	(1)	0
ν_1, ν_2, ν_3	1/2	(1)	0	G	1	(8)	0
u, c, t	1/2	(3)	+2/3	W^{\pm}	1	(1)	<u>+</u> 1
d,s,b	1/2	(3)	-1/3	Z^0	1	(1)	0

- All structures in the Universe are made of three of these twelve:
 - *u*, *d*, *e*
 - $p \sim uud$, $n \sim ddu$

- The photon A^0 carries the EM force
- The gluon G carries the strong force
- The *W* and *Z*-bosons carry the weak force

Discovery of $h \rightarrow \gamma \gamma$

Zero or Two?

• $h \rightarrow \gamma \gamma$

Landau-Yang theorem: A spin-1 particle cannot decay into two photons

- J = 0 or 2, that is the question
- $h \to ZZ^* \to 4\ell$

The spin of the parent particle affects the angular distribution of the daughter particles

 $-J^P = 0^+$, that is the answer

Discovery of $h \rightarrow ZZ^*$

Elementary or Composite?

If *h* is a composite spin-0 particle:

- A whole series of new composite particles, in particular spin-1 particles
- whose mass scale is (roughly) inversely proportional to the distance scale which characterizes its internal structure
- Three ways to experimentally test the question

Elementary or Composite?

- Virtual effects of the heavy spin-1 particles would modify various properties of the *W* and *Z*-bosons (LEP)
- Direct searches for the new spin-1 particles (LHC)
- Properties of *h* would differ if it were elementary or composite (LHC)

 $L_{\text{compositness}} \leq O(10^{-19} \text{ meters})$

 $m_{
ho}$: mass of spin-1 resonances $g_{
ho}$: coupling to SM particles $\xi = g_{
ho}^2 v^2 / m_{
ho}^2$ Thamm et al, 1502.01701

 $\xi = -0.041^{+0.090}_{-0.094}$ Liu et al, 1809.09126

The first jewel - summary

ATLAS and CMS have discovered an elementary* spin-0 particle *h*

- * At least down to a scale of $O(10^{-4})$ the size of the proton
- All other known elementary particles have either spin-½ (matter particles) or spin-1 (force carriers)
- The ways h is produced and the ways it decays call for its identification with the only particle that was predicted by the Standard Model and had not been observed until the 2012 discovery – the Higgs Boson

The SM spectrum

particle	spin	color	Q_{EM}	mass [v]
W^{\pm}	1	(1)	<u>±</u> 1	g/2
Z^0	1	(1)	0	$\sqrt{g^2+g'^2}/2$
A^0	1	(1)	0	0
G	1	(8)	0	0
h	0	(1)	0	$\sqrt{2\lambda}$
e, μ, τ	1/2	(1)	-1	$y_{e,\mu,\tau}/\sqrt{2}$
$ u_e, \nu_\mu, \nu_ au$	1/2	(1)	0	
и, с, t	1/2	(3)	+2/3	$y_{u,c,t}/\sqrt{2}$
d, s, b	1/2	(3)	-1/3	$y_{d,s,b}/\sqrt{2}$

The second jewel

Prologue: CERN, LHC, ATLAS/CMS

The first jewel: An elementary spin-0 particle

The second jewel: Why the weak interaction is short range

The third jewel: How the τ -lepton, t-quark, and b-quark gain their masses

Epilogue: New questions, More jewels, My own work

The second jewel

The discovery of the mechanism that makes the weak interactions short-ranged

- The short range of the weak interactions is in contrast to the other (electromagnetic and strong) interactions mediated by spin-1 particles
- The relevant processes:

 $-h \rightarrow ZZ^*, WW^* (h \rightarrow Vf\bar{f})$

 $-WW \rightarrow h, ZZ \rightarrow h (VBF)$

Discovery of $h \rightarrow WW^*$

The range of interactions

- EM interactions are mediated by the massless photon ⇒ Long range
- Strong interactions are mediated by the massless gluon ⇒ Long range*
 * (Color confinement renders the long range effects)

* (Color confinement renders the long range effects unobservable)

• Weak interactions are mediated by the massive W- and Z-bosons $[m_V = O(100 m_p)]$ \Rightarrow At $d > 10^{-18}$ meters, the weak force is exponentially suppressed

Interactions with spin-1 mediators

- QFT's can predict the existence of int's with spin-1 mediators, and many of their features, by assuming that Nature has certain symmetries
- Numerous predictions stemming from these symmetries successfully tested
- The symmetries predict massless mediators: $EM \sqrt{}$
 - Strong $\sqrt{}$
 - Weak ???

A possible solution

- If the symmetry is respected by the QFT but not by the ground state (GS) of the Universe (spontaneous symmetry breaking):
 - The theory loses nothing of its predictive power
 - The predictions are, however, different from the case of symmetric ground state
 - In particular, the force carriers gain masses

A specific scenario

- One way in which the symmetry can be broken in the GS:
 - The field related to the Higgs boson h the Higgs field does not vanish in the GS
 - The weak force carriers are slowed down by their interaction with the Higgs field
 - Moving at speeds lower than c is equivalent to $m_V \neq 0$
- \Rightarrow the weak interactions are short range

Consequences

Higgs field = 0

- $h \rightarrow ZZ^*$ forbidden
- $ZZ \rightarrow h$ forbidden
- Similarly for W

Higgs field $\neq 0$

- $h \rightarrow ZZ^*$ allowed
- $ZZ \rightarrow h$ allowed
- Similarly for W

"The theory loses nothing of its predictive power": The strength of the interaction of the Z-boson with the Higgs field, measured by m_Z , is closely related to the strength of interaction of the Z-boson with the Higgs particle, measured by $\Gamma(h \to ZZ^*)$ and by $\sigma(ZZ \to h)$

 $\mu_{VV}^{l} (V = W, Z)$

- The Standard definition
 - $-\mu_{VV^*}^i \equiv \frac{[rate(i \rightarrow h \rightarrow VV^*)]_{experiment}}{[rate(i \rightarrow h \rightarrow VV^*)]_{SM}}$
- My (broader) definition

$$-\mu_{VV^*}^i \equiv \frac{[\operatorname{rate}(i \to h \to VV^*)]_{\text{experiment}}}{[\operatorname{rate}(i \to h \to VV^*)]_{v_h}}$$

• $[\operatorname{rate}(i \to h \to VV^*)]_{v_h}$:

– The rate that is predicted if the field v that gives f its mass is the field of the particle h

ATLAS/CMS

- $\mu_{WW^*} = 1.19 \pm 0.12$ [PDG 2021]
 - Within present experimental accuracy, $\Gamma(h \rightarrow WW^*)$ has the value that corresponds to the strength of interaction that would give the W-boson its mass, and would limit the effects of W-mediated weak interaction to short range
- $\mu_{ZZ^*} = 1.06 \pm 0.09$ [PDG 2021]
 - Within present experimental accuracy, $\Gamma(h \rightarrow ZZ^*)$ has the value that corresponds to the strength of interaction that would give the Z-boson its mass, and would limit the effects of Z-mediated weak interaction to short range
- $\mu^{\text{VBF}} = 1.02 \pm 0.18$ [PDG 2021]
 - The rate of $\sigma(VV \rightarrow h)$ corresponds to the same strength of interactions

The second jewel - summary

- ATLAS and CMS have established that the force carriers of the weak interaction gain their masses via their interaction with the everywhere-present Higgs field
- The strength of these interactions is measured to be of the right size to limit the effects of the weak interactions to distances shorter than 10⁻¹⁸ meters

The third jewel

Prologue: CERN, LHC, ATLAS/CMS

The first jewel: An elementary spin-0 particle

The second jewel: Why the weak interaction is short range

The third jewel: How the τ -lepton, *t*-quark, and *b*-quark gain their masses

Epilogue: New questions, More jewels, My own work

The third jewel

• The discovery of the mechanism by which the τ lepton and the *t*- and *b*-quarks gain their masses

- The relevant processes:
 - $-h \rightarrow \tau^{+}\tau^{-}$ $-h \rightarrow b\overline{b}$ $-pp \rightarrow ht\overline{t}$

Masses of matter particles

- Reminder the matter particles *f* :
 - Up-type quarks: t, c, u
 - Down-type quarks: b, s, d
 - Charged leptons: τ , μ , e
 - Neutrinos: v_3, v_2, v_1
- The symmetry that predicted $m_{W,Z} = 0$ predicts also $m_f = 0$
- Experiments established $m_f \neq 0$ (except, perhaps, the lightest ν)
- ???

A possible solution

- The symmetry is spontaneously broken in the GS of the Universe
- Opens the door to $m_f \neq 0$
- But by what mechanism?
- Another open question that was (partially) answered by ATLAS and CMS

A specific scenario

- The Higgs field, which slows down the *W* and *Z*-bosons, can also slow down the matter particles
- But for this to happen, a new type of interaction has to exist: an interaction mediated by a spin-0 mediator, the Higgs boson itself
- "Yukawa interaction" never observed before*

Consequences

- Discovery of $h \rightarrow f\bar{f}$ would mean a discovery of a new type of interaction, the Yukawa interaction
- "The theory loses nothing of its predictive power": The strength of the interaction of a matter particle f with the Higgs field, measured by m_f , is closely related to the strength of interaction of f with the Higgs particle, measured by $\Gamma(h \to f\bar{f})$ and, for the top, by $\sigma(pp \to ht\bar{t})$

ATLAS/CMS

- $\mu_{\tau^+\tau^-} = 1.15^{+0.16}_{-0.15}$ [PDG 2021]
 - Within present experimental accuracy, $\Gamma(h \rightarrow \tau^+ \tau^-)$ has the value that corresponds to the strength of interaction that would give the τ -lepton its mass
- $\mu_{b\bar{b}} = 1.04 \pm 0.13$ [PDG 2021]
 - Within present experimental accuracy, $\Gamma(h \rightarrow b\overline{b})$ has the value that corresponds to the strength of interaction that would give the *b*-quark its mass
- $\mu_{ht\bar{t}} = 1.28 \pm 0.20$ [PDG 2021]
 - Within present experimental accuracy, $\sigma(pp \rightarrow ht\bar{t})$ has the value that corresponds to the strength of interaction that would give the *t*-quark its mass

The third jewel - summary

- ATLAS and CMS have discovered that the third generation particles – the tau lepton, the bottom quark and the top quark – gain their masses via their interaction with the everywhere-present Higgs field
- This is also the discovery of a new, and very special type of interaction: the Yukawa interaction, mediated by a spin-0 force carrier, the Higgs boson

The fourth jewel

- The discovery of the mechanism by which the μ lepton (a second generation particle) gains its mass
- The relevant process: $h \rightarrow \mu^+ \mu^-$
- $\mu_{\mu^+\mu^-} = 1.19 \pm 0.34$ [PDG 2021]
 - Within present experimental accuracy, $\Gamma(h \rightarrow \mu^+ \mu^-)$ has the value that corresponds to the strength of interaction that would give the μ -lepton its mass
 - For comparison, if the μ -lepton derived its mass from d=6 terms, we would find $\mu_{\mu^+\mu^-}=9$

The SM interactions

interaction	fermions	force carrier	coupling	flavor
EM	u, d, l	A^0	eQ	universal
Strong	u, d	G	g_s	universal
NC weak	all	Z^0	$g(T_3 - s_W^2 Q)/c_W$	universal
CC weak	$\bar{u}d/\bar{v}\ell$	W^{\pm}	gV/g 1	FC/universal
Yukawa	u, d, l	h	y_f	Diagonal

Epilogue

Introduction: CERN, LHC, ATLAS/CMS

The first jewel: An elementary spin-0 particle

The second jewel: Why the weak interaction is short range

The third jewel: How the τ -lepton, t-quark, and b-quark gain their masses

Epilogue: New questions, More jewels, My own work

New Questions

- The value of m_h implies that our Universe is likely to be in an unstable state. In the (far) future, a transition should happen to an entirely different Universe
- Is the fundamental structure of the entire Universe only a temporary one?

Degrassi et al, 1205.6497

- The lightness of m_h , compared to $m_{\rm Planck}$, or to $\Lambda_{\rm seesaw}$, requires, within QFT, extreme fine-tuning
- Is Nature in fact unnatural?

More Jewels

- What happened at the electroweak phase transition ($t_{universe} \sim 10^{-11}$ seconds!)?
 - Strongly 1st-order or smooth crossover?
 - $\Gamma(h \rightarrow \text{invisible}), \Gamma(h \rightarrow gg), \Gamma(h \rightarrow \gamma\gamma) \dots$
 - $\sigma(e^+e^- \rightarrow hZ)$

Physics – Uspekhi 62 (9) 920 – 930 (2019)

©2019 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences

PACS numbers: 12.10.-g, 12.60.-i, 14.80.-j

The Higgs program and open questions in particle physics and cosmology

B Heinemann, Y Nir

PHYSICS OF OUR DAYS

DOI: https://doi.org/10.3367/UFNe.2019.05.038568

Contents

1.	Introduction	920
2.	Experiments	921
3.	Singlet scalars	921
	$3.1 \ M_{\rm s} < M_{\rm h}/2; \ 3.2 \ M_{\rm s} > M_{\rm h}/2$	
4.	What is the solution to the flavor puzzle(s)?	924
5.	Additional Questions	926
	5.1 Is h alone? 5.2 Is h elementary? 5.3 What keeps $m_h^2 \ll m_{Pl}^2$? 5.4 Was the electroweak phase transition (strongly)	
	first order? 5.5 Do CP violating h interactions generate the baryon asymmetry?	
6.	Conclusions	928
	References	929

My Own Work

- $\mu_{\mu^+\mu^-} < 1.7$: A complex Yukawa coupling of the muon cannot be the dominant CP-violating source of the baryon asymmetry
- Yet, it could account for O(16%) of Y_B
- $\mu_{\tau^+\tau^-} = 0.91 \pm 0.13$: A complex Yukawa coupling of the tau can be the dominant CP-violating source of the baryon asymmetry
- The top and bottom Yukawa couplings cannot:
 - $-Y_B^{(t)} \le 0.02Y_B^{\text{obs}}, Y_B^{(b)} \le 0.04Y_B^{\text{obs}}$
- PRL 124 (2020) 18; JHEP 05 (2020) 056; JHEP 07 (2021) 060
- E. Fuchs, M. Losada, YN, Y. Viernik,

Conclusions

The LHC experiments have already several jewels – major discoveries – in their crown

There are additional jewels – major discoveries – guaranteed to be added to it

There are numerous other significant results from the LHC experiments

Major progress is expected also in other HEP experiments (neutrinos, flavor, EDMs...)

SM:
$$Y_F = (\sqrt{2}/\nu)M_F$$

Proportionality•
$${}^{y_i}/{y_j} = {}^{m_i}/{m_j}$$
 $(y_i \equiv Y_{ii})$ Factor of
proportionality• ${}^{y_i}/{m_i} = {}^{\sqrt{2}}/{v}$ Diagonality• $Y_{ij} = 0$ for $i \neq j$ CP conserving• $Im({}^{y_i}/{m_i}) = 0$

Experimental tests

Experimental Higgs Physics

- $\mu_{\text{combined}} = 1.13 \pm 0.06$
- $\mu_{WW^*} = 1.19 \pm 0.12$
- $\mu_{ZZ^*} = 1.06 \pm 0.09$
- $\mu_{\gamma\gamma} = 1.11 \pm 0.10$
- $\mu_{b\bar{b}} = 1.04 \pm 0.13$
- $\mu_{c\bar{c}} = 37 \pm 19$
- $\mu_{\tau^+\tau^-} = 1.15 \pm 0.15$
- $\mu_{\mu^+\mu^-} = 1.19 \pm 0.34$
- $\mu_{t\bar{t}h} = 1.28 \pm 0.20$
- $\mu_{Z\gamma} < 3.6$
- $\mu_{\rm ggF} = 1.07 \pm 0.08$
- $\mu_{\rm VBF} = 1.21 \pm 0.24$

- $BR_{e^+e^-} < 3.6 \times 10^{-4}$
- $BR_{\mu\tau} < 1.5 \times 10^{-3}$
- $BR_{e\tau} < 2.2 \times 10^{-3}$
- $BR_{e\mu} < 6.1 \times 10^{-5}$
- BR_{t→ch} < 7.3×10^{-4}
- BR_{t \to uh} < 1.9×10^{-4}
- $BR_{invisible} < 0.19$

What is the scale of new physics?

