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We are witnessing the dawn of precision black hole 
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A typical binary merger

is sensitive to tidal responses of the mergers
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high-density EOS is then stitched to the SLy EOS [113]
below about half the nuclear saturation density. This is
chosen because such low densities do not significantly
impact the global properties of the NS [114]. Differ-
ent low density EOSs can produce a difference in radius,
for a given m, of order 0.1 km. Though use of a spe-
cific parametrization makes our results model-dependent,
we have checked that they are consistent with another
common EOS parametrization, the piecewise polytropic
one [115, 116], as also found in [117].

In this analysis, we follow the methodology detailed
in [117], developed from the work of [118], to sample di-
rectly in an EOS parameter space. We sample uniformly
in all EOS parameters within the following ranges: �0 2
[0.2, 2], �1 2 [�1.6, 1.7], �2 2 [�0.6, 0.6], and �3 2
[�0.02, 0.02] and additionally impose that the adiabatic
index �(p) 2 [0.6, 4.5]. This choice of prior ranges for
the EOS parameters was chosen such that our parametriza-
tion encompasses a wide range of candidate EOSs [110]
and leads to NSs with a compactness below 0.33 and a
tidal deformability above about 10. Then for each sam-
ple, the four EOS parameters and the masses are mapped to
a (⇤1,⇤2) pair through the Tolman-Oppenheimer-Volkoff
(TOV) equations describing the equilibrium configuration
of a spherical star [119]. The two tidal deformabilities are
then used to compute the waveform template.

Sampling directly in the EOS parameter space allows for
certain prior constraints to be conveniently incorporated in
the analysis. In our analysis, we impose the following cri-
teria on all EOS and mass samples: (i) causality, the speed
of sound in the NS (

p
dp/d✏) must be less than the speed

of light (plus 10% to allow for imperfect parametrization)
up to the central pressure of the heaviest star supported by
the EOS; (ii) internal consistency, the EOS must support
the proposed masses of each component; and (iii) obser-
vational consistency, the EOS must have a maximum mass
at least as high as previously observed NS masses, specif-
ically 1.97M�. Another condition the EOS must obey is
that of thermodynamic stability; the EOS must be mono-
tonically increasing (d✏/dp > 0). This condition is built
into the parametrization [110], so we do not need to explic-
itly impose it.

RESULTS

We begin by demonstrating the improvement in the mea-
surement of the tidal deformability parameters due to im-
posing a common but unknown EOS for the two NSs. In
Fig. 1 we show the marginalized joint posterior PDF for
the individual tidal deformabilities. We show results from
our analysis using the ⇤a(⇤s, q) relation in green and the
parametrized EOS without a maximum mass constraint in
blue. These are compared to results from [52], where the
two tidal deformability parameters are sampled indepen-
dently, in orange. The shaded region marks the ⇤2 < ⇤1

region that is naturally excluded when a common realis-
tic EOS is assumed, but is not excluded from the analysis
of [52]. In both cases imposing a common EOS leads to
a smaller uncertainty in the tidal deformability measure-
ment. The area of the 90% credible region for the ⇤1–⇤2

posterior shrinks by a factor of ⇠ 3, which is consistent
with the results of [106] for soft EOSs and NSs with simi-
lar masses. The tidal deformability of a 1.4M� NS can be
estimated through a linear expansion of ⇤(m)m5 around
1.4M� as in [5, 48, 120] to be ⇤1.4 = 190+390

�120
at the 90%

level when a common EOS is imposed (here and through-
out this paper we quote symmetric credible intervals). Our
results suggest that “soft” EOSs such as APR4, which pre-
dict smaller values of the tidal deformability parameter, are
favored over “stiff” EOSs such as H4 or MS1, which pre-
dict larger values of the tidal deformability parameter and
lie outside the 90% credible region.

0 250 500 750 1000 1250
�1

0

500

1000

1500

2000

�
2

M
S1b

M
S1

More Compact

Less Compact

FIG. 1. Marginalized posterior for the tidal deformabilities of the
two binary components of GW170817. The green shading shows
the posterior obtained using the ⇤a(⇤s, q) EOS-insensitive re-
lation to impose a common EOS for the two bodies, while the
green, blue, and orange lines denote 50% (dashed) and 90%
(solid) credible levels for the posteriors obtained using EOS-
insensitive relations, a parametrized EOS without a maximum
mass requirement, and independent EOSs (taken from [52]), re-
spectively. The gray shading corresponds to the unphysical re-
gion ⇤2 < ⇤1 while the seven black scatter regions give the
tidal parameters predicted by characteristic EOS models for this
event [113, 115, 121–125].

We next explore what inferences we can make about
the structure of NSs. We do this using the spectral EOS
parametrization described above in combination with the
requirement that the EOS must support NSs up to at least
1.97M�, a conservative estimate based on the heaviest
known pulsar [65]. From this we obtain a posterior for the
NS interior pressure as a function of rest-mass density. The

Tidal response of neutron stars from GW170817

LIGO/Virgo 1805.11581



Tidal  Love numbers in Newtonian gravity

black holes (D=4):

Newtonian limit:
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Tidal  Love numbers in Einstein gravity

Morally, one wants to say that far away from an object 
gravity is Newtonian, and use the same definition.


However,

Fang, Lovelace gr-qc/0505156

Binnington, Poisson 0906.1366


Damour, Nagar 0906.0096

✴One may worry whether this definition is reparametrization 
invariant

✴Einstein gravity is non-linear, one may worry that the

source/resource separation is not well-defined

A conceptually clean definition is provided 
by the worldline effective theory

Goldberger, Rothstein hep-th/0409156, 0511133

Kol, Smolkin 1110.3764


Porto 1601.04914




Post-Newtonian EFT for GW

© LIGO collaboration, ligo.org

EFT framework: separate effects in a systematic perturbative expansion

Tidal effects Potential modes Radiation

distance, r
R rorbit �

Post-Newtonian (Point-particle) EFT Goldberger & Rothstein’05,06  Porto’16
tidal effects radiationpotential

<latexit sha1_base64="p9eeZ+8cwIhnl2T4Mjx+q+t6pDg=">AAAB6nicdVDJSgNBEK1xjXGLevTSGARPoTuELLegF48RzQLJEHo6PUmTnoXuHiEM+QQvHhTx6hd582/sSSKo6IOCx3tVVNXzYim0wfjDWVvf2Nzazu3kd/f2Dw4LR8cdHSWK8TaLZKR6HtVcipC3jTCS92LFaeBJ3vWmV5nfvedKiyi8M7OYuwEdh8IXjBor3aqhHhaKuIQxJoSgjJBaFVvSaNTLpI5IZlkUYYXWsPA+GEUsCXhomKRa9wmOjZtSZQSTfJ4fJJrHlE3pmPctDWnAtZsuTp2jc6uMkB8pW6FBC/X7REoDrWeBZzsDaib6t5eJf3n9xPh1NxVhnBgesuUiP5HIRCj7G42E4szImSWUKWFvRWxCFWXGppO3IXx9iv4nnXKJVEuVm0qxebmKIwencAYXQKAGTbiGFrSBwRge4AmeHek8Oi/O67J1zVnNnMAPOG+ftniOGw==</latexit>rs <latexit sha1_base64="nZzwglBUustGpdNZtmKqC3aHiVg=">AAAB7nicdVBNS8NAEJ3Ur1q/qh69LBbBU0hqaOut6MVjBfsBbSib7aZdutmE3Y1QQn+EFw+KePX3ePPfuGkrqOiDgcd7M8zMCxLOlHacD6uwtr6xuVXcLu3s7u0flA+POipOJaFtEvNY9gKsKGeCtjXTnPYSSXEUcNoNpte5372nUrFY3OlZQv0IjwULGcHaSF05zGIZzIflimNfNmpVr4Yc23HqbtXNSbXuXXjINUqOCqzQGpbfB6OYpBEVmnCsVN91Eu1nWGpGOJ2XBqmiCSZTPKZ9QwWOqPKzxblzdGaUEQpjaUpotFC/T2Q4UmoWBaYzwnqifnu5+JfXT3XY8DMmklRTQZaLwpQjHaP8dzRikhLNZ4ZgIpm5FZEJlphok1DJhPD1KfqfdKq2W7O9W6/SvFrFUYQTOIVzcKEOTbiBFrSBwBQe4AmercR6tF6s12VrwVrNHMMPWG+fGFyQFw==</latexit>rorb

EFT is the tool to disentangle physics from different length scales 

at  a black hole is described by the worldline effective actionr ≫ rs
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To keep formulas short in what follows gravity -> massless scalar  

Love numbers -> Wilson coefficients
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Provides unambiguous gauge-invariant definition of Love numbers

✴One expects to find  Λl ≳ 𝒪(1)

✴One expects to find (classical) RG running
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Schwarzschild Love numbers
Fang, Lovelace gr-qc/0505156

Binnington, Poisson 0906.1366


Damour, Nagar 0906.0096

Kol, Smolkin  1110.3764


Hui, Joyce, Penco, Santoni, 
Solomon 2010.00593

✴No Love in 4d: Λl = 0

✴d>4, generically Love is a non-vanishing constant
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Kerr Love numbers all vanish (in 4d)
Chia 2010.07300


Charalambous, SD, Ivanov 2102.08917

also Le Tiec, Casals, Franzin 2010.15795

a bit subtle, the actual worldsheet action (also for Schwarzschild)

Schwarzschild
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Kerr Love numbers all vanish (in 4d)
Chia 2010.07300


Charalambous, SD, Ivanov 2102.08917

also Le Tiec, Casals, Franzin 2010.15795

a bit subtle, the actual worldsheet action (also for Schwarzschild)
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static dissipative response due to frame dragging
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Holographic interpretation 

Remarkably, in some cases we know what ’s are. For instance, for 
black 3-branes in type IIA string theory these are operators of N=4 

supersymmetric Yang—Mills.

𝒪

Love numbers characterize how black hole is “glued” to the rest of 
the space-time.
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All Love properties follow  from the Teukolsky  
equation
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We show that perturbations of massless fields in the Kerr black hole background enjoy a hidden

SL(2,R)×U(1) (“Love”) symmetry in the properly defined near zone approximation. Love symmetry

mixes IR and UV modes. Still, this approximate symmetry allows us to derive exact results about

static tidal responses. Generators of the Love symmetry are globally well defined and have a smooth

Schwarzschild limit. Generic regular solutions of the near zone Teukolsky equation form infinite-

dimensional SL(2,R) representations. In some special cases (!̂ parameter is an integer), these are

highest weight representations. This is the situation that corresponds to vanishing Love numbers.

In particular, static perturbations of four-dimensional Schwarzschild black holes belong to finite-

dimensional representations. Other known facts about static Love numbers also acquire an elegant

explanation in terms of the SL(2,R) representation theory.

1. INTRODUCTION

The LIGO detection of gravitational waves [1] from in-

spiralling black hole binaries opened an era of precision

black hole physics. The worldline effective theory [2–4]

provides an efficient modern toolbox for analytical cal-

culations of the waveforms from binary inspirals and for

interpreting the results. In this framework each of the

individual black holes in the binary is treated as a point-

like particle. Finite size effects are captured by higher-

dimensional operators on the worldline. This approach is

analogous to the multipole expansion in electrodynamics.

Wilson coefficients in front of operators with a

quadratic dependence on external fields are called

Love numbers. They characterize black hole tidal re-

sponses [5]. Remarkably, static Love numbers, which de-

termine response to time-independent external fields, are

found to vanish in four-dimensional Einstein theory both

for spherical and spinning black holes [5–11]. In this re-

gard, black holes are called the most rigid objects in the

Universe. In the worldline effective field theory context,

this implies that all quadratic finite-size operators with-

out time derivatives vanish for black holes, which repre-

sents an outstanding naturalness problem in the context

of the worldline effective theory [12].

∗ pc2560@nyu.edu
† sergei.dubovsky@gmail.com
‡ mi1271@nyu.edu

In four dimensions, static Love numbers vanish for per-

turbing fields of all spins and for an arbitrary multipolar

index !. To add to the puzzle, the situation is far more

complicated for higher-dimensional Schwarzschild black

holes [8, 9]. Static Love numbers are nonzero in higher

dimensions for generic multipolar indices !. However,

they do vanish for some special values of !, and for some

other special values they exhibit classical renormalization

group running.

This intricate pattern calls for a novel (“Love”) sym-

metry of black holes which would account for the peculiar

behavior of static Love numbers. In this Letter, we iden-

tify such a symmetry.

2. NEAR ZONE EXPANSION

We start with the simplest case of a massless scalar

field ϕ in the Kerr background. The resulting Klein–

Gordon equation is known to be separable in the Boyer–

Lindquist coordinates1. After writing

ϕ = Φ(t, r,φ)S(θ) = R(r)S(θ)e−iωt+imφ (1)

one arrives at the spin weight s = 0 Teukolsky equation

[13] for the radial function,

∂r (∆∂rR) + (V0 + εV1)R = !(!+ 1)R , (2)

1 Our conventions for the Kerr metric are summarized in Ap-

pendix A.
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A = l(l + 1) +O(!⌦)

and

is the eigenvalue of the angular equation

To identify Love numbers one extracts a decaying tail 
of the solution which is regular at the horizon



Looks like a good fishing place for some interesting 
hidden structure (symmetry?)

NB: static Love numbers only care about  limit. Let’s look 
at the whole thing nevertheless…  

ω = 0



Near zone expansion
Starobinsky’73, Maldacena, Strominger hep-th/9702015, Castro, Maloney, Strominger 1004.0996, 
Bertini, Cacciatori, Klemm 1106.0999, Chia 2010.0730
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We show that perturbations of massless fields in the Kerr black hole background enjoy a hid-

den infinite-dimensional (“Love”) symmetry in the properly defined near zone approximation. Love

symmetry mixes IR and UV modes. Still, this approximate symmetry allows us to derive exact

results about static tidal responses. Generators of the Love symmetry are globally well defined and

have a smooth Schwarzschild limit. The Love symmetry contains an SL(2,R) × U(1) subalgebra.

Generic regular solutions of the near zone Teukolsky equation form infinite-dimensional SL(2,R)

representations. In some special cases (!̂ parameter is an integer), these are highest weight represen-

tations. This situation corresponds to vanishing Love numbers. In particular, static perturbations

of four-dimensional Schwarzschild black holes belong to finite-dimensional representations. Other

known facts about static Love numbers also acquire an elegant explanation in terms of the SL(2,R)

representation theory.

1. INTRODUCTION

The LIGO detection of gravitational waves [1] from in-

spiralling black hole binaries opened an era of precision

black hole physics. The worldline effective theory [2–4]

provides an efficient modern toolbox for analytical cal-

culations of the waveforms from binary inspirals and for

interpreting the results. In this framework each of the

individual black holes in the binary is treated as a point-

like particle. Finite size effects are captured by higher-

dimensional operators on the worldline.

Wilson coefficients in front of operators with a

quadratic dependence on external fields are called

Love numbers. They characterize black hole tidal re-

sponses [5]. Remarkably, static Love numbers, which de-

termine response to time-independent external fields, are

found to vanish in four-dimensional Einstein theory both

for spherical and spinning black holes [5–11]. This repre-

sents an outstanding naturalness problem in the context

of the worldline effective theory [12].

In four dimensions static Love numbers vanish for per-

turbing fields of all spins and for an arbitrary multipo-

lar index !. To add to the puzzle, the situation is way

more complicated for higher-dimensional Schwarzschild
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black holes [8, 9]. Static Love numbers are nonzero in

higher dimensions for generic multipole indices !. How-

ever, they do vanish for some special values of !, and for

some other special values they exhibit classical renormal-

ization group running.

This intricate pattern calls for a novel (“Love”) sym-

metry of black holes which would account for the peculiar

behavior of static Love numbers. In this work we identify

such a symmetry.

2. NEAR ZONE EXPANSION

We start with the simplest case of a massless scalar

field ϕ in the Kerr background. The resulting Klein–

Gordon equation is known to be separable in the Boyer–

Lindquist coordinates1. After writing

ϕ = Φ(t, r,φ)S(θ) = R(r)S(θ)e−iωt+imφ (1)

one arrives at the spin weight s = 0 Teukolsky equation

[13] for the radial function,

∂r (∆∂rR) + (V0 + εV1)R = !(!+ 1)R , (2)

1 Our conventions for the Kerr metric are summarized in Ap-

pendix A.

``Far zone”

r � rs

``Near zone”

(r � rs)! ⌧ 1

2

where

V0 =
(2Mr+)2

∆

(

(ω − Ωm)2 − 4ωΩm
r − r+
r+ − r−

)

, (3)

V1 =
2M(ωam+ 4M2ω2r+β)

r+β(r − r−)
+ ω2(r2 + 2Mr + 4M2) ,

(4)

and we have introduced

β =
r+ − r−
4Mr+

, (5)

and #(# + 1) is the eigenvalue of the angular operator

(A2). Note that in general # is not an integer. Here ε is

a formal parameter of the near zone expansion. For the

physical Kerr background ε = 1, while throughout this

paper we are working in the leading near zone approxi-

mation, ε = 0. As follows from (4), the leading near zone

approximation is accurate provided

ωr " 1 , Mω " 1 . (6)

The range of validity of the near zone approximation cov-

ers the near horizon region r ! r+ and overlaps with the

asymptotically flat region r # r+.

It is important to note that the near zone expansion is

different from the low frequency expansion because one

keeps some frequency dependent terms in the Teukolsky

equation even at the leading order in the near zone ex-

pansion. Nevertheless, it provides an accurate approxi-

mation at low frequencies. In particular, the leading near

zone approximation produces exact answers for ω = 0

quantities, such as static tidal responses.

Related to this, there is an ambiguity in how one de-

fines the near zone expansion associated with a freedom

to move ω dependent terms between V0 and V1 as soon

as V1 stays finite at the horizon. Other choices of the

near zone split can be found in, e.g., [14–16].

3. LOVE SYMMETRY

The reason for our choice is related to the following

crucial observation. Let us consider three vector fields of

the form

L0 = −β−1∂t ,

L±1 = e±βt
(

∓∆1/2∂r + β−1∂r(∆
1/2)∂t +

a

∆1/2
∂φ
)

.

(7)

It is straightforward to check that these fields satisfy the

SL(2,R) algebra,

[Ln, Lm] = (n−m)Ln+m , n,m = −1, 0, 1 . (8)

Using the quadratic Casimir of this algebra

C2 ≡ L2
0 −

1

2
(L−1L1 + L1L−1) (9)

one finds that the ε = 0 Teukolsky equation can be writ-

ten as

C2Φ = #(#+ 1)Φ . (10)

Eigenvalues of the operator L0 are given by

L0Φ = iβ−1ωΦ ≡ hΦ . (11)

By transforming into advanced/retarded coordinates it

is straightforward to check that all three SL(2,R) gener-

ators are regular at the black hole horizon. As a result,

regular solutions of the near zone Teukolsky equation

form SL(2,R) representations even though the symme-

try is “hidden”—it does not correspond to an isometry of

the background. We will refer to this hidden symmetry

as the Love symmetry.

The above properties of the Love symmetry can be

contrasted with the non-critical Kerr/CFT proposal [16].

It was observed there that, for a different choice of

the near zone split, the leading order Teukolsky equa-

tion enjoys a local hidden SL(2,R)L × SL(2,R)R con-

formal symmetry. However, the corresponding vector

fields are not well-defined globally, because they do not

respect the φ → φ + 2π periodicity. As a result, reg-

ular solutions of the Teukolsky equation do not form

SL(2,R)L × SL(2,R)R representations.

Furthermore, the Love symmetry generators (7) have

a smooth Schwarzschild limit, which is not the case for

the Kerr/CFT SL(2,R)L × SL(2,R)R. At a = 0 vector

fields (7) reduce to the ones derived previously in [17].

These considerations suggest that the Love symmetry

(7) may be a better starting point for a holographic de-

scription of Kerr black holes. This expectation is further

supported by the observation that the SL(2,R) × U(1)

symmetry which we found (where the U(1) factor corre-

sponds to axial rotations) matches the near horizon isom-

etry of the extreme Kerr solution [18, 19]. A nonextreme

Kerr black hole may be considered as an excitation above

the leading Regge trajectory populated by extreme Kerr

V1 =
2M(!am+ 4M2!2r+�)

r+�(r � r�)
+ !2(r2 + 2Mr + 4M2)

V0 =
(2Mr+)2

�

✓
(! � ⌦m)2 � 4!⌦m

r � r+
r+ � r�

◆

@r(�@rR) + (V0 + V1)R = `(`+ 1)R

V1 = 0 V0 = 0

Starobinsky (1965), Page (1975)

Teukolsky (1972)

Chia (2020)

� =
r+ � r�
4Mr+

= 2⇡TH⌦ =
a

2Mr+

� = (r � r�)(r � r+)

!M ⌧ 1

V0
V1

near horizon region
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!r ⌧ 1

At low frequencies,                   , near zone covers horizon and overlaps

with the asymptotically flat region   
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Let’s choose  the following near zone split
2

where

V0 =
(2Mr+)2

∆

(

(ω − Ωm)2 − 4ωΩm
r − r+
r+ − r−

)

, (3)

V1 =
2M(ωamβ + 4M2ω2r+)

r+(r − r−)
+ ω2(r2 + 2Mr + 4M2) ,

(4)

and we have introduced

β =
4Mr+
r+ − r−

, (5)

and #(# + 1) is the eigenvalue of the angular operator

(A2), while Ω = a/2Mr+ is black hole’s angular velocity.

Note that, in general, # is not an integer. Here, ε is a

formal parameter of the near zone expansion. For the

physical Kerr background ε = 1, while throughout this

Letter we are working in the leading near zone approxi-

mation, ε = 0. As follows from (4), the leading near zone

approximation is accurate provided

ωr " 1 , Mω " 1 . (6)

The range of validity of the near zone approximation cov-

ers the near horizon region r ! r+ and overlaps with the

asymptotically flat region r # r+.

It is important to note that the near zone expansion is

different from the low frequency expansion because one

keeps some frequency dependent terms in the Teukolsky

equation even at the leading order in the near zone ex-

pansion. Nevertheless, it provides an accurate approxi-

mation at low frequencies. In particular, the leading near

zone approximation produces exact answers for ω = 0

quantities, such as static tidal responses.

Related to this, there is an ambiguity in how one de-

fines the near zone expansion associated with a freedom

to move ω dependent terms between V0 and V1 as soon

as V1 stays finite at the horizon. Other choices of the

near zone split can be found in, e.g., [14–16].

3. LOVE SYMMETRY

The reason for our choice is related to the following

crucial observation. Let us consider three vector fields of

the form

L0 = −β∂t ,

L±1 = e±β−1t
(

∓∆1/2∂r + β∂r(∆
1/2)∂t +

a

∆1/2
∂φ
)

.

(7)

It is straightforward to check that these fields satisfy the

SL(2,R) algebra,

[Ln, Lm] = (n−m)Ln+m , n,m = −1, 0, 1 . (8)

Using the quadratic Casimir of this algebra

C2 ≡ L2
0 −

1

2
(L−1L1 + L1L−1) (9)

one finds that the ε = 0 Teukolsky equation can be writ-

ten as

C2Φ = #(#+ 1)Φ . (10)

Eigenvalues of the operator L0 are given by

L0Φ = iβωΦ ≡ hΦ . (11)

By transforming into advanced or retarded coordinates

it is straightforward to check that all three SL(2,R) gen-

erators are regular at the black hole horizon. As a result,

regular solutions of the near zone Teukolsky equation

form SL(2,R) representations even though the symme-

try is “hidden”—it does not correspond to an isometry of

the background. We will refer to this hidden symmetry

as the Love symmetry.

The above properties of the Love symmetry can be con-

trasted with the noncritical Kerr/CFT proposal [16]. It

was observed there that, for a different choice of the near

zone split, the leading order Teukolsky equation enjoys a

local hidden SL(2,R)L×SL(2,R)R conformal symmetry.

However, the corresponding vector fields are not well de-

fined globally, because they do not respect the φ→ φ+2π

periodicity. As a result, regular solutions of the Teukol-

sky equation do not form SL(2,R)L × SL(2,R)R repre-

sentations.

Furthermore, the Love symmetry generators (7) have

a smooth Schwarzschild limit, which is not the case for

the Kerr/CFT SL(2,R)L × SL(2,R)R. At a = 0 vector

fields (7) reduce to the ones derived previously in [17].

These considerations suggest that the Love symmetry

(7) may be a better starting point for a holographic de-

scription of Kerr black holes. This expectation is further

supported by the observation that the SL(2,R) × U(1)

symmetry which we found (where the U(1) factor corre-

sponds to axial rotations) matches the near horizon isom-

etry of the extreme Kerr solution [18, 19]. A nonextreme

Kerr black hole may be considered as an excitation above

the leading Regge trajectory populated by extreme Kerr
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✴L’s are regular at the horizon

✴Satisfy SL(2,R) algebra
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ten as

C2Φ = #(#+ 1)Φ . (10)

Eigenvalues of the operator L0 are given by

L0Φ = iβωΦ ≡ hΦ . (11)

By transforming into advanced or retarded coordinates

it is straightforward to check that all three SL(2,R) gen-

erators are regular at the black hole horizon. As a result,

regular solutions of the near zone Teukolsky equation

form SL(2,R) representations even though the symme-

try is “hidden”—it does not correspond to an isometry of

the background. We will refer to this hidden symmetry

as the Love symmetry.

The above properties of the Love symmetry can be con-

trasted with the noncritical Kerr/CFT proposal [16]. It

was observed there that, for a different choice of the near

zone split, the leading order Teukolsky equation enjoys a

local hidden SL(2,R)L×SL(2,R)R conformal symmetry.

However, the corresponding vector fields are not well de-

fined globally, because they do not respect the φ→ φ+2π

periodicity. As a result, regular solutions of the Teukol-

sky equation do not form SL(2,R)L × SL(2,R)R repre-

sentations.

Furthermore, the Love symmetry generators (7) have

a smooth Schwarzschild limit, which is not the case for

the Kerr/CFT SL(2,R)L × SL(2,R)R. At a = 0 vector

fields (7) reduce to the ones derived previously in [17].

These considerations suggest that the Love symmetry

(7) may be a better starting point for a holographic de-

scription of Kerr black holes. This expectation is further

supported by the observation that the SL(2,R) × U(1)

symmetry which we found (where the U(1) factor corre-

sponds to axial rotations) matches the near horizon isom-

etry of the extreme Kerr solution [18, 19]. A nonextreme

Kerr black hole may be considered as an excitation above

the leading Regge trajectory populated by extreme Kerr

✴Near zone Teukolsky equation turns into 
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C2 is the quadratic Casimir 

2

where

V0 =
(2Mr+)2

∆

(

(ω − Ωm)2 − 4ωΩm
r − r+
r+ − r−

)

, (3)

V1 =
2M(ωamβ + 4M2ω2r+)

r+(r − r−)
+ ω2(r2 + 2Mr + 4M2) ,

(4)

and we have introduced

β =
4Mr+
r+ − r−

, (5)

and #(# + 1) is the eigenvalue of the angular operator

(A2), while Ω = a/2Mr+ is black hole’s angular velocity.

Note that, in general, # is not an integer. Here, ε is a

formal parameter of the near zone expansion. For the

physical Kerr background ε = 1, while throughout this

Letter we are working in the leading near zone approxi-

mation, ε = 0. As follows from (4), the leading near zone

approximation is accurate provided

ωr " 1 , Mω " 1 . (6)

The range of validity of the near zone approximation cov-

ers the near horizon region r ! r+ and overlaps with the

asymptotically flat region r # r+.

It is important to note that the near zone expansion is

different from the low frequency expansion because one

keeps some frequency dependent terms in the Teukolsky

equation even at the leading order in the near zone ex-

pansion. Nevertheless, it provides an accurate approxi-

mation at low frequencies. In particular, the leading near

zone approximation produces exact answers for ω = 0

quantities, such as static tidal responses.

Related to this, there is an ambiguity in how one de-

fines the near zone expansion associated with a freedom

to move ω dependent terms between V0 and V1 as soon

as V1 stays finite at the horizon. Other choices of the

near zone split can be found in, e.g., [14–16].

3. LOVE SYMMETRY

The reason for our choice is related to the following

crucial observation. Let us consider three vector fields of

the form

L0 = −β∂t ,

L±1 = e±β−1t
(

∓∆1/2∂r + β∂r(∆
1/2)∂t +

a

∆1/2
∂φ
)

.

(7)

It is straightforward to check that these fields satisfy the

SL(2,R) algebra,

[Ln, Lm] = (n−m)Ln+m , n,m = −1, 0, 1 . (8)

Using the quadratic Casimir of this algebra

C2 ≡ L2
0 −

1

2
(L−1L1 + L1L−1) (9)

one finds that the ε = 0 Teukolsky equation can be writ-

ten as

C2Φ = #(#+ 1)Φ . (10)

Eigenvalues of the operator L0 are given by

L0Φ = iβωΦ ≡ hΦ . (11)

By transforming into advanced or retarded coordinates

it is straightforward to check that all three SL(2,R) gen-

erators are regular at the black hole horizon. As a result,

regular solutions of the near zone Teukolsky equation

form SL(2,R) representations even though the symme-

try is “hidden”—it does not correspond to an isometry of

the background. We will refer to this hidden symmetry

as the Love symmetry.

The above properties of the Love symmetry can be con-

trasted with the noncritical Kerr/CFT proposal [16]. It

was observed there that, for a different choice of the near

zone split, the leading order Teukolsky equation enjoys a

local hidden SL(2,R)L×SL(2,R)R conformal symmetry.

However, the corresponding vector fields are not well de-

fined globally, because they do not respect the φ→ φ+2π

periodicity. As a result, regular solutions of the Teukol-

sky equation do not form SL(2,R)L × SL(2,R)R repre-

sentations.

Furthermore, the Love symmetry generators (7) have

a smooth Schwarzschild limit, which is not the case for

the Kerr/CFT SL(2,R)L × SL(2,R)R. At a = 0 vector

fields (7) reduce to the ones derived previously in [17].

These considerations suggest that the Love symmetry

(7) may be a better starting point for a holographic de-

scription of Kerr black holes. This expectation is further

supported by the observation that the SL(2,R) × U(1)

symmetry which we found (where the U(1) factor corre-

sponds to axial rotations) matches the near horizon isom-

etry of the extreme Kerr solution [18, 19]. A nonextreme

Kerr black hole may be considered as an excitation above

the leading Regge trajectory populated by extreme Kerr

All properties of Love numbers can be nicely 
explained in terms of SL(2,R) representation theory
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Figure 1: The finite-dimensional highest-weight representation of SL (2,R) whose
elements solve the near-zone equations of motion for a massless scalar field in the
Schwarzschild black hole background, with multipolar index `.

spectrum by requiring an appropriate regularity condition. Still, these solutions can
be physically relevant if one wants to describe a process of pumping energy into
a black hole. The vectors {v�`,n} (` < n  2`) have purely negative imaginary
frequencies !n = (2⇡TH)in. They match imaginary frequencies of highly-damped
quasinormal modes [70]

!k =
i

4M
(k + 1/2) = (2⇡TH)i(k + 1/2) . (4.18)

The spacing of states in the SL (2,R) multiplet 2⇡TH exactly coincides with the
leading asymptotic spacing of highly-damped quasinormal modes.

Finally, let us briefly comment on the massive wave equation with mass µ. In the
regime µ(r � rs) ⌧ 1, and µM ⌧ 1, it has the following form in the Schwarzschild
black hole near zone approximation [69],


@r�@r �

r4
s
@2

t

�

�
� = [`(`+ 1) + µ2r2

s
]� . (4.19)

The mass changes the eigenvalue of the Love symmetry Casimir such that the physical
static solution �(! = 0) regular at the horizon does not belong to the highest weight
SL (2,R) representation anymore. A direct calculation shows that Love numbers are
not zero as well and crucially, their values are just constants at first order in µ2r2

s
, i.e.

they do not run with distance. This example emphasizes the key role of the highest
weight property for the vanishing of Love numbers. On the other hand, we see that
the absence of running here can be interpreted as resulting from the presence of the
symmetry.
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will also be solutions of equations of motion that are regular on the future event
horizon, but singular on the past event horizon. On the other hand, for a lowest-
weight vector with h = +` we have

L�1�̄+`,0 (m) = 0 , L0�̄
(m)

+`,0
= +`�̄(m)

+`,0
,

) �̄(m)

+`,0
=

✓
r � r+
r � r�

◆�im�

eim�e�`t/��`/2 .
(4.27)

We obtain an ascending tower of solutions that are regular on the past event horizon,
but singular on the future event horizon. The highest-weight representation is now
infinite-dimensional, falling into the general category of Verma modules, see Fig. 2.

The physical static solution is therefore identified with the L0 - null state in the
highest-weight representation,

�(! = 0) = �(m)

�`,`
= (L�1)

` �(m)

�`,0
(4.28)

Observing that,

(L+1)
n

"✓
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r � r�

◆im�

eim�F (r)

#

= (�1)n
✓
r � r+
r � r�

◆im�

eim�ent/��n/2
dn

drn
F (r)

(4.29)

for arbitrary F (r) and n, the annihilation condition for the static case (n = ` + 1)
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infinite rep, non-zero Love numbers,

no running because regular and singular 

solutions belong to algebraically different reps

✴half-integer   ̂l

infinite rep,  regular and singular solutions 
belong to isomorphic reps, log running, cf. 

resonance condition in conformal perturbation 
theory



Further comments

✴a story for vectors and tensors is similar.

Higher spin fields

highest-weight property dictates vanishing of Love numbers

geometric meaning: GHP Lie derivatives w.r.t. Love vectors
~(approximate) Killing vectors

Ludwig’99

Comparing with the transformation laws for the “bad” spin coefficients (7.10),
0

BBB@

"

�

�

↵

1

CCCA
�,�

��!

0

BBB@

�
�
"+ 1

2
D lnB

�

��1
�
� + 1

2
4 lnB

�

ei�
�
� + 1

2
� lnB

�

e�i�
�
↵ + 1

2
�̄ lnB

�

1

CCCA
(E.15)

we see that the non-homogeneous part of the transformation laws for the scalar
functions ↵⇠ and �⇠ can be reproduced from,

↵bad

⇠
= �⇠µ⇣µ , �⇠ = �⇠µ⇣̄µ (E.16)

where,

⇣µ = �`µ� � nµ"+mµ↵ + m̄µ� = �
1

2
(n⌫

rµ`⌫ � m̄⌫
rµm⌫) (E.17)

In conclusion, the most general generalized Lie derivative that acts on GHP tensors
of GHP weights {p, q} reads,

L⇠ = L⇠ � ⇠µ
�
p⇣µ + q⇣̄µ

�
+ p⌘⇠ + q#⇠ (E.18)

with ⌘⇠ and #⇠ two scalar functions independent of p and q that transform covariantly
with zero GHP weight,

⌘⇠
�,�

��! ⌘⇠ , #⇠

�,�

��! #⇠ (E.19)

that are also linear in the vector field ⇠µ. For the minimal choice ⌘⇠ = #⇠ = 0, we
retrieve the usual GHP derivative ([41]). These scalar functions that appear above
are arbitrary but part of them can be fixed by uniquely constructing a generalized
Lie derivative when Lie dragging along a Killing vector. This was first proposed by
Ludwig et al ([36, 37]) and is obtained from our above construction by requiring the
existence of a Killing vector, satisfying L⇠gµ⌫ = 0, to be apparent directly at the
level of the tetrad vectors. It is sufficient to impose,

nµL⇠`
µ = m̄µL⇠m

µ = 0 when L⇠gµ⌫ = 0 (E.20)

uniquely fixing ⌘⇠ and #⇠ with the end result for the generalized Lie derivative,

L⇠ = L⇠ + b nµL⇠`
µ
� s m̄µL⇠m

µ , when L⇠gµ⌫ = 0 (E.21)

E.1 Preserving the algebra

A further feature we want the generalized Lie derivative to have is for it to preserve
the algebra already satisfied by the usual Lie derivative with respect to some vector
generators of the algebra. In particular, we want to preserve the identity,

[L⇠1 ,L⇠2 ] = L[⇠1,⇠2]LB
(E.22)
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spin weights

Teukolsky master equation in NZ:

Geroch, Held, Penrose’73

✴  gravity in 4d: no symmetry, log’s are generic. R3

c.f. GHP Lie derivatives
Geroch, Held, Penrose ’73


✴a story for charged black holes is similar. In 4d Love 
symmetry turns into a near-horizon isometry in the 
extremal  limit.Q = M

Extremal RN/Kerr black holes

Q = M

AdS2 = SL(2,R)

AdS2 ⇥ S2

R3

RN:

Kerr:

lim
Q!M

SL(2,R)Love = SL(2,R)NH

lim
a!M

SL(2,R)LovenÛ(1) � SL(2,R)NH

J = M2

“Infinite-dimensional Love” 

Bardeen, Horowitz (1998)

La ! La + va@� va 2 SL(2,R)

Non extremal ~ Spontaneously broken NH isometry



Is this a triumph of naturalness a la ’t Hooft?

In the current version looks more like an example 
of a “UV miracle”

2

where

V0 =
(2Mr+)2

∆

(

(ω − Ωm)2 − 4ωΩm
r − r+
r+ − r−

)

, (3)

V1 =
2M(ωamβ + 4M2ω2r+)

r+(r − r−)
+ ω2(r2 + 2Mr + 4M2) ,

(4)

and we have introduced

β =
4Mr+
r+ − r−

, (5)

and #(# + 1) is the eigenvalue of the angular operator

(A2), while Ω = a/2Mr+ is black hole’s angular velocity.

Note that, in general, # is not an integer. Here, ε is a

formal parameter of the near zone expansion. For the

physical Kerr background ε = 1, while throughout this

Letter we are working in the leading near zone approxi-

mation, ε = 0. As follows from (4), the leading near zone

approximation is accurate provided

ωr " 1 , Mω " 1 . (6)

The range of validity of the near zone approximation cov-

ers the near horizon region r ! r+ and overlaps with the

asymptotically flat region r # r+.

It is important to note that the near zone expansion is

different from the low frequency expansion because one

keeps some frequency dependent terms in the Teukolsky

equation even at the leading order in the near zone ex-

pansion. Nevertheless, it provides an accurate approxi-

mation at low frequencies. In particular, the leading near

zone approximation produces exact answers for ω = 0

quantities, such as static tidal responses.

Related to this, there is an ambiguity in how one de-

fines the near zone expansion associated with a freedom

to move ω dependent terms between V0 and V1 as soon

as V1 stays finite at the horizon. Other choices of the

near zone split can be found in, e.g., [14–16].

3. LOVE SYMMETRY

The reason for our choice is related to the following

crucial observation. Let us consider three vector fields of

the form

L0 = −β∂t ,

L±1 = e±β−1t
(

∓∆1/2∂r + β∂r(∆
1/2)∂t +

a

∆1/2
∂φ
)

.

(7)

It is straightforward to check that these fields satisfy the

SL(2,R) algebra,

[Ln, Lm] = (n−m)Ln+m , n,m = −1, 0, 1 . (8)

Using the quadratic Casimir of this algebra

C2 ≡ L2
0 −

1

2
(L−1L1 + L1L−1) (9)

one finds that the ε = 0 Teukolsky equation can be writ-

ten as

C2Φ = #(#+ 1)Φ . (10)

Eigenvalues of the operator L0 are given by

L0Φ = iβωΦ ≡ hΦ . (11)

By transforming into advanced or retarded coordinates

it is straightforward to check that all three SL(2,R) gen-

erators are regular at the black hole horizon. As a result,

regular solutions of the near zone Teukolsky equation

form SL(2,R) representations even though the symme-

try is “hidden”—it does not correspond to an isometry of

the background. We will refer to this hidden symmetry

as the Love symmetry.

The above properties of the Love symmetry can be con-

trasted with the noncritical Kerr/CFT proposal [16]. It

was observed there that, for a different choice of the near

zone split, the leading order Teukolsky equation enjoys a

local hidden SL(2,R)L×SL(2,R)R conformal symmetry.

However, the corresponding vector fields are not well de-

fined globally, because they do not respect the φ→ φ+2π

periodicity. As a result, regular solutions of the Teukol-

sky equation do not form SL(2,R)L × SL(2,R)R repre-

sentations.

Furthermore, the Love symmetry generators (7) have

a smooth Schwarzschild limit, which is not the case for

the Kerr/CFT SL(2,R)L × SL(2,R)R. At a = 0 vector

fields (7) reduce to the ones derived previously in [17].

These considerations suggest that the Love symmetry

(7) may be a better starting point for a holographic de-

scription of Kerr black holes. This expectation is further

supported by the observation that the SL(2,R) × U(1)

symmetry which we found (where the U(1) factor corre-

sponds to axial rotations) matches the near horizon isom-

etry of the extreme Kerr solution [18, 19]. A nonextreme

Kerr black hole may be considered as an excitation above

the leading Regge trajectory populated by extreme Kerr
Love symmetry mixes UV and IR modes!  



The story is likely to be incomplete:

✴Starobinsky near zone has another SL(2,R) leading to 
an identically vanishing response at the locking 
frequency . Combining the two leads to an 
infinite extension of the Love algebra.

ω = mΩ

✴There is a glimpse of a symmetry argument operating 
strictly in the static limit, at least for the 4d 
Schwarzschild.

Hui, Joyce, Penco, Santoni, Solomon 2105.01069

The verdict in this case is not out yet. Independently 
of the result, it is fascinating to entertain a possibility 
that some of the fine-tunings in Nature can be 
explained by symmetries which mix UV and IR .


