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Outline

Elementary optical excitations of transition metal dichalcogenide

(TMD) monolayers

Electrical control of optical properties: realization of quantum confined

excitons in a monolayer p-i-n junction

Prospects for strongly interacting excitons and polaritons



Materials: Transition metal dichalcogenides (TMD)
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TMD monolayers: direct band-gap semiconductors with
a valley degree of freedom
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TMD monolayers: direct band-gap semiconductors with
a valley degree of freedom

For MoSe, in hBN, E; =230 meV, ag=1.1 nm






Photoluminescence (PL) from 2D materials

*  Due to strong Coulomb interactions, electrons and holes form strongly bound
states before they recombine: PL is dominated by decay of an exciton

or a trion if QW has very low density electrons (frion osc. str. is much smaller).

Exciton linewidth of neutral MoSe, 1s
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Charge tunable van der Waals heterostructures

- Exfoliation of and stacking of monolayers of semiconducting TMDs and

graphene, together with ~50 nm thick insulating boron nitride (BN) layers

- A gate voltage applied between the top/bottom (transparent) graphene

gate and the MoSe2 layer allows for tuning the electron/hole density




Carrier density dependent reflection
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Sharp increase in conductance indicates free carriers
Reflection 1s strongly modified as electrons or holes injected

A new red-shifted resonance — attractive polaron -
if electrons/holes are present



EXxciton-electron scattering in a monolayer TMD

« Excitons are neutral bosonic optical excitations (quanta of
electronic polarization wave) that interact with itinerant electrons
or holes and form a bound molecular state termed “trion”

Exciton as a mobile impurity in
a degenerate electron system



Interacting exciton-electron system (with Eugene)
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Contact interaction strength determined 1 I Z 1
by the trion binding energy v, v k

N + W2k (2)
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Interacting exciton-electron system (with Eugene)

H = Z ekclck + Zwkxliajk + Z chLJrqck:U};,_qu/
k k

Approximate form of eigenstates of H in the truncated Hilbert space:

) = <x$¢o+ > ¢ch};cqu};q) 0,)|Fs) | Polaron Chevy-Ansatz

bare exciton Exciton + Fermi-sea electron-hole pair

Eigenstates with a large spectral weight:
attractive (AP) and repulsive (RP) polarons

Sidler, Cotlet, Demler, Al Nat. Phys (2017)
Efimkin&MacDonald PRB (2017)



Exciton-(Fermi)-polaron:
exciton dynamically screened by itinerant electrons
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Exciton-(Fermi)-polaron:
exciton dynamically screened by itinerant electrons

Repulsive polaron (RP) branch
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Attractive polaron (AP) branch

Existence of a bound trion state 1s crucial
for attractive polaron formation

* For vanishing electron density, attractive
polaron & trion are indistinguishable

* Excitons in K-valley can only be dressed
to form AP by electrons in K’-valley
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Note the strong electron
(hole) density dependence
of repulsive polarons:

Exciton as a «quantum
sensor» of correlated
electron states



Quantum confinement of neutral excitons using electric fields
Device structure

» Stack:
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Quantum confinement of neutral excitons using electric fields

Quantized 2P-current
measurement T=4K,B=7T

Current (pA)

~10 8 —6 —4 -2 0
Gate voltage Vg (V)

3nm Ti/ 7 nm Au split gate =» Optically
transparent



Quantum confinement of neutral excitons using electric fields

Set top gate to O V

16601

16504

1640

16301

Energy (meV)

1620+

"
| ..oc \ y .
/
1610 - X
8 6 -4 -2 0 2 4 6 8 .
Ve (V)

For Vg; =5V (black dashed line), [R5
the sample 1s electron doped

|
R EEE SN EE SE s TEE e R EE G e e s
L= R ¥ B

10 um
]

3nm Ti/ 7 nm Au split gate =» Optically
transparent



Reflection spectrum- Top gate dependence for Vg = 5V

As we reduce V5 we can
hole dope under the top gate;
there is large electric field in
the i-region that separates p-
and n-doped regions

V>0 overall electron doping
Vi1 Vig <0: hole doping under the top gate

In-plane field, Fx

Chargé density




Reflection spectrum- Top gate dependence for Vg = 5V

As we reduce V5 we can
hole dope under the top gate;

In-plane field, Fx

Charge density

there is large electric field in
the i-region that separates p-
and n-doped regions

p-doped




Reflection spectrum- Top gate dependence for Vg = 5V

Position x

_ , Field-induced confinement
2D exciton

.\ ¥

As we reduce V5 we can
hole dope under the top gate;
there is large electric field in
the i-region that separates p-
and n-doped regions

In-plane field, Fx

Stark Shift AE

@

dc Stark shift
v

electric field F,

Charge density



Reflection spectrum- Top gate dependence for Vg = 5V

e

]:hm ~1meV

As we reduce V5 we can
hole dope under the top gate;
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Reflection spectrum- Top gate dependence for Vg = 5V
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Reflection spectrum- Top gate dependence for Vg = 5V

As we reduce V5 we can
hole dope under the top gate;
there is large electric field in
the i-region that separates p-
and n-doped regions
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Quantum confined excitons in the p-i-n diode

hBN -

MSer @ @ @ -~ — @ ® @ @

(1)

hBN T 40 1 p—i—n Vic=-7V

Fix —

BG

N
|o] (1012 cm~2)

o
—
-~

=
o

V(x) (meV)
un

o
/
\‘

E — Ex,, (meV)

_5- i : i . .
—-80 —-60 —40 -20 O 20 40 60 80
Position (nm)

-10 -8 —6 -4 -2 0

Top gate voltage Vg (V) Change 1n slope of red-shift due to optical charging effects



Quantum confinement of excitons in another device
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Evidence for 1D confinement: linearly polarized emission
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Long-range electron-hole exchange ensures that the exciton emission is polarized along the wire



New directions

Strongly interacting photons: so far the successful efforts used either 0D
emitters (transmons in circuit-QED) or Rydberg excitations from 3D atomic

ensembles).

- a 1D exciton wire in a OD cavity as a solid-state photonic system with

strong polariton interactions in the polariton blockade regime

i graphene
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New directions

Strongly interacting photons: so far the successful efforts used either 0D
emitters (transmons in circuit-QED) or Rydberg excitations from 3D atomic

ensembles).

- a 1D exciton wire in a OD cavity as a solid-state photonic system with

strong polariton interactions in the polariton blockade regime

1D excitons could have dipolar length exceeding 100 nm: transition from a

Tonks-Girardeau gas to a Wigner crystal of excitons (Odiziejewski,Schmidt)
Synthetic gauge fields for photons: gA=a Ex B

Fully electrically defined and tunable quantum dots in monolayer TMDs.
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