First glimpse on data from simulations

Mihai Potlog Institute of Space Science, Bucharest

First steps ...

- Get acquainted with the LUXE experimental setup & understand the simulation implementation
- Check the .root format of simulation output
- Investigate the analysis chain
- Plot first graphs to verify the compliance of simulated data

Get acquainted with the LUXE experimental setup

Understand the simulation implementation

2-D histograms

G4String title2D[] =
 { "(transmit, charged) : projected position at exit vs energy",
 "(transmit, charged vs neutral): kinetic energy e-gamma at exi",
 "(transmit, charged): x, y position at exit",
 "(transmit, neutral): x, y position at exit",
 "Z vertex position vs E of charged produced after the magnet",
 "Z vertex position vs E of neutral produced after the magnet"
 "electron polar anvgle vs E at exit",
 "photons polar anvgle vs E at exit",
 "photons polar anvgle vs E at exit",
 "photons position x, y at exit",
 "photons position x, y at exit",
 "primary electron x, vs dx/dz",
 "electron x, vs dx/dz at IP",
 "positron polar anvgle vs E at exit"
};

"Tracks"	eventid	trackid	detid	pdg	phys- proc	E/px/py/ pz	t/x/y/z	vtxx/y/z	theta/ phi	x/y/ zlocal	p- trackid	nsec- ondary	weight
Data type	integer	vector	vector	vector	vector	vector	vector	vector	vector	vector	vector	vector	double
"Hits"	eventid	track_ list	detid	hitid		edep	layerid	cellx/y	trackx/ y/z				weight
Data type	integer	vector	vector	integer		double	integer	integer	vector		8		double
			ann a anns an	-			Intogor	Intogor					
"HitTracks"	eventid	trackid		pdg	pproc	E/px/py/ pz		vtxx/y/z			ptid		weight

#include <vector>

void read_vector()

TFile *f = new TFile("luxe_hics_signal_165gev_3000nm_jeti40_cv12_em0_alw_lmu_cut_tv4_hv1_633.root"); TTree *t1 = (TTree*)f->Get("Tracks");

TH2F *hist_xy = new TH2F("hist_xy", "Cluster energy", 100, 0, 500, 100, 0, 30); TH1F *h_vtxz = new TH1F("h_vtxz", "vtxz", 100, 0, 500);

```
std::vector<Float_t> *vtxx = new std::vector<Float_t>();
std::vector<Float_t> *vtxy = new std::vector<Float_t>();
std::vector<Float_t> *vtxz = new std::vector<Float_t>();
```

```
t1->SetBranchAddress("vtxx", &vtxx);
t1->SetBranchAddress("vtxy", &vtxy);
t1->SetBranchAddress("vtxz", &vtxz);
```

Int_t nentries = (Int_t)t1->GetEntries();
//cout << "Entries: " << nentries << endl;</pre>

```
for (Int_t i=0; i<nentries;i++)</pre>
```

t1->GetEntry(i);

Float_t hVtxz = 0; Int_t h_index = -1;

if (vtxz->size() > 0) {
 for (Int_t j = 0; j < vtxz->size(); j++){
 if ((*vtxz)[j] > hVtxz){
 hVtxz = (*vtxz)[j];
 h_index = j;
 }
 hist_xy->Fill((*vtxx)[h_index], (*vtxy)[h_index]);
 h_vtxz->Fill((*vtxz)[h_index]);
}

Investigate the analysis chain

Analysis chain

Energy deposition in sensitive element of the detector – Hit:

• It comes as Chip ID, channel ID, Stave ID, ... signal => (Sensor ID, cell_x, cell_y, layer)

Collection of Hits in a sensor assigned to a single particle – Cluster:

• {(Sensor ID, cell_x, cell_y, layer)} => local: (x,y,z)

Assign clusters to particles track:

• local: (x,y,z) => global (x,y,z) + Track/Shower reconstruction (Fit)

Reconstruct particles:

• Particle type, vertex, momentum, ...

10

Tracks xy distribution

11

Energy deposition on cells 1000 କ କ୍ଷି.01-800 0.008 0.006 -600 0.004 400 0.002-420⁰ 40 40 20 20 200 12_{celly} 0 10 Ŕ 6

17

