RG of GR from on-shell amplitudes

with D. Haslehner, M. Ruhdorfer, J. Serra \& A. Weiler arXiv 2109.06191

Pietro Baratella, TUM

Outline

- Motivation (what do we do and what for?)
- Formalism (why amplitudes?)
- Results of the analysis:
- (modified) helicity rules
- non-renormalization theorems
- computing the RG

RG of GR

what do we do?

- we study the RG of effective theories that include gravity
- encoded in β functions of couplings and UV anomalous dimensions $\gamma_{U V}$ of operators
- work at the amplitude level, up to one loop and 4 external legs

RG of GR

but M_{p} is 'large'!

- A graviton is expected to pay M_{P}^{-1} to interact with stuff
- all the effects of gravity that go like $\left(E / M_{P}\right)^{\#}$ are typically small, e.g. in collider experiments where $E \lesssim \sqrt{s_{L H C}}$

RG of GR

but M_{P} is 'large'!

- A graviton is expected to pay M_{P}^{-1} to interact with stuff
- all the effects of gravity that go like $\left(E / M_{P}\right)^{\#}$ are typically small, e.g. in collider experiments where $E \lesssim \sqrt{s_{L H C}}$

RG of GR
 (how to read)

- gravity is a fundamental interaction, that we study with an EFT approach
- $\gamma_{U V}$ of operators encode fundamental properties of the EFT of matter + gravity
- we provide methods to efficiently compute $\gamma_{U V}$ (and compute some)

Example
 arXiv 2109.13937 (Arkani-Hamed, Huang, Liu, Remmen)

- Einstein-Maxwell effective theory: study deviations from R + FF
- encoded in higher-dimensional operators as $C_{\mathscr{O}} \mathcal{O}$
- control M/Q of extremal black-hole solutions (deviation away from unity)
- in the deep IR:

$$
C_{\mathscr{O}} \sim \gamma_{\mathcal{O}} \ln \left(s / \mu^{2}\right)
$$

Example
 arXiv 2109.13937 (Arkani-Hamed, Huang, Liu, Remmen)

- Einstein-Maxwell effective theory: study deviations from R + FF
- encoded in higher-dimensional operators as $C_{\mathscr{O}} \mathcal{O}$
- control M/Q of extremal black-hole solutions (deviation away from unity)
- in the deep IR:

$$
C_{\mathcal{O}} \sim \underset{\substack{\gamma_{\mathcal{O}} \\ \text { sign controlled by weak-gravity conjecture }}}{ } \ln \left(s / \mu^{2}\right)
$$

$\gamma_{U V}$ from on-shell amplitudes

$\gamma_{U V}$ from on-shell amplitudes

From loop to cut

+ other diagrams

From loop to cut

From loop to cut

$$
\Sigma_{\sigma} \epsilon_{a}(\sigma) \epsilon_{b}(\sigma)
$$

From loop to cut

- Well defined operation (cut) that sends a loop integral to a product of on-shell tree amplitudes with definite helicity, integrated over a phase space
- keeps all the information on the divergent (or $\ln \mu$) part

1. on-shell helicity amplitudes: extremely convenient when dealing with massless particles with $h \geq 1$ (no gauge redundancies)
2. tree-level: helicity bounds on tree amplitudes allow to obtain nonrenormalization theorems at loop level

Non-renormalization from helicity

$$
h_{A} \equiv \sum h_{i}
$$

$$
\begin{aligned}
& h_{\text {loop }}=h_{L}+h_{R} \\
& \qquad \quad\left|h_{\text {loop }}\right| \leq\left|h_{L}\right|+\left|h_{R}\right|
\end{aligned}
$$

Non-renormalization from helicity

$$
h_{A} \equiv \sum_{i} h_{i}
$$

(all incoming)

$$
h_{\text {loop }}=h_{L}+h_{R}
$$

- Limits the way in which divergences can appear, in a non-trivial way

$$
\left|h_{\text {loop }}\right| \leq\left|h_{L}\right|+\left|h_{R}\right|
$$

(triangle inequality)

- arXiv 1505.01844 (nonrenormalization without supersymmetry)

Non-renormalization from helicity

- what makes this non-trivial?

$$
\left|h_{\text {loop }}\right| \leq\left|h_{L}\right|+\left|h_{R}\right|
$$

- surprisingly, 4-point tree-level amplitudes in a marginal theory have (almost) all $h=0$ (not obvious from Feynman diagrams)

+ crossing $=0$

Non-renormalization from helicity

- what makes this non-trivial?

$$
\left|h_{\text {loop }}\right| \leq\left|h_{L}\right|+\left|h_{R}\right|
$$

- surprisingly, 4-point tree-level amplitudes in a marginal theory have (almost) all $h=0$ (not obvious from Feynman diagrams)

$$
\left|h_{\text {loop }}^{(4)}\right| \leq\left|h_{L}^{(4)}\right|+\left|h_{R}^{(4)}\right|=0
$$

Helicity bounds on tree amplitudes

- Non-trivial bounds on total helicity of tree amplitudes (marginal couplings)
- direct computation
- supersymmetric Ward identities (arXiv: 1607.05236)

Helicity bounds on tree amplitudes

- Non-trivial bounds on total helicity of tree amplitudes (marginal couplings)
- direct computation
- supersymmetric Ward identities (arXiv: 1607.05236)

can not arise from a holomorphic potential

Helicity bounds on tree amplitudes

including minimally coupled gravity

- simple rule of thumb (maybe more than just this): factorization into $A_{3} \times A_{3}$

- in marginal theories, $h_{3}=+1$ or $h_{3}=-1$, implying $h_{4}=0$
- the rule also applies when including minimal coupling to gravity, but now $\left|\mathrm{h}_{3}\right|$ $=1,2$ and $h_{4}=0$ no longer holds

Helicity bounds on tree amplitudes

including minimally coupled gravity

- modified helicity \tilde{h}, of which gravitons carry one unit instead of two
- all 3-point amplitudes (marginal + minimal) have $\tilde{h}= \pm 1$

Helicity bounds on tree amplitudes

including minimally coupled gravity

- all 4-point amplitudes including minimally coupled gravitons that are factorizable (all except ' $\lambda \phi^{4 \prime}$) can have $|\tilde{h}|=0,2$
- it turns out that all those with $|\tilde{h}|=2$ actually vanish (in line with the rule of thumb)
- helicity bound easily promoted by induction to $\left|\tilde{h}_{n}\right| \leq n-4$
- \tilde{h} extremely useful to express non-renormalization results including gravity (standard helicity does not allow to make clean statements)

Modified helicity

KLT relations

- modified helicity has a natural interplay with the KLT relations
- $\tilde{h}=0$ can be seen as a consistency requirement coming from KLT (and the fact that $\mathrm{h}=0$ in marginal theories)

Modified helicity

(summary)

Non-renormalization including gravity

$$
\tilde{h}_{\text {loop }}=0
$$

At 4 points and any order in M_{P}^{-1}
in a minimally coupled marginal theory

Non-renormalization including gravity

$\gamma_{i j}=0$ unless $\tilde{h}_{i}=\tilde{h}_{j}$

in a 4 to 4 mixing, here including operators and amplitudes containing gravitons

Non-renormalization including gravity

beyond four point

- previous discussion suggests to organise EFT operators according to n and modified helicity

Non-renormalization including gravity

beyond four point

- previous discussion suggests to organise EFT operators according to n and modified helicity
- non-mixing result expressed with red cone

Non-renormalization including gravity

beyond four point

- previous discussion suggests to organise EFT operators according to n and modified helicity
- non-mixing result expressed with red cone
- possible divergences at order M_{P}^{-2} in a marginal theory minimally coupled to gravity must lie inside the blue cone

Computing the RG of GR

- mixing among operators including at least one graviton up to $\mathrm{n}=4$ (red)
- divergences in generic minimally coupled theories at order M_{P}^{-2} (blue) and M_{P}^{-4}, up to four legs
- order M_{P}^{-4} anomalous dimensions are connected to positivity of Wilson coefficients at dimension 8

Computing the RG of GR

divergences @ $\mathbf{O}\left(M_{P}^{-2}\right)$ in any minimally coupled theory

- divergences at this order only can involve $h=0, \pm 1 / 2$ particles as external states
- therefore M_{P}^{-2} can only come from an internal graviton propagating

Computing the RG of GR

divergences @ $\mathbf{O}\left(M_{P}^{-2}\right)$ in any minimally coupled theory

(A)

(B)

Computing the RG of GR

divergences @ $\mathbf{O}\left(M_{P}^{-2}\right)$ in any minimally coupled theory

(A)

Computing the RG of GR

divergences @ $\mathbf{O}\left(M_{P}^{-2}\right)$ in any minimally coupled theory

Computing the RG of GR

divergences @ $\mathbf{O}\left(M_{P}^{-2}\right)$ in any minimally coupled theory

loop divergence as a 'function' of the corresponding tree amplitude (red)

$$
\mathcal{A}_{\text {tree }}\left(1_{\bar{\psi}_{1}}, 2_{\psi_{2}}, 3_{\phi_{3}}, 4_{\phi_{4}}\right)=\left(\frac{T_{s}}{s}+\frac{Y_{t}}{t}+\frac{Y_{u}}{u}\right)\langle 13\rangle[23],
$$

Computing the RG of GR

divergences @ $\mathbf{O}\left(M_{P}^{-2}\right)$ in any minimally coupled theory

Computing the RG of GR

divergences @ $\mathbf{O}\left(M_{P}^{-2}\right)$ in any minimally coupled theory

Computing the RG of GR

vanishing of 'class (B)'

connected to the non-renormalization of $T^{\mu \nu}$ (graviton couples to matter through $h_{\mu \nu} T^{\mu \nu}$)

$$
\langle 0| T^{\mu \nu}|3,4\rangle_{\mathrm{div}}=0
$$

Computing the RG of GR

vanishing of 'class (B)'

connected to the non-renormalization of $T^{\mu \nu}$ (graviton couples to matter through $h_{\mu \nu} T^{\mu \nu}$)

$$
\langle 0| T^{\mu \nu}|3,4\rangle_{\mathrm{div}}=0
$$

second diagram proportional to the collinear anomalous dimension of particle 3 (and its antiparticle 4)

$\gamma_{\text {coll }}$ from $T^{\mu \nu}$ non-renormalization

- angular analysis shows that $T^{\mu \nu}$ has $\mathrm{J}=2$
- first diagram proportional to a sum over certain J=2 partial wave coefficients
- second diagram proportional to $\gamma_{\text {coll }}$
- from the vanishing of their sum we get a new formula to express collinear anomalous dimensions

(B)

$\gamma_{\text {coll }}$ from $T^{\mu \nu}$ non-renormalization

- new formula to express collinear anomalous dimensions in terms of partial wave coefficients (marginal couplings only)

$$
\gamma_{\mathrm{coll}}^{(\Phi)}=\left.\frac{1}{16 \pi^{2}} \sum_{\Phi^{\prime}} \frac{f_{\Phi^{\prime}}}{f_{\Phi}} a_{\Phi^{\prime} \Phi^{\prime} \rightarrow \Phi \bar{\Phi}}^{(\mathrm{reg}}\right|_{\mathrm{ra}}
$$

2010.13809 (PB, Fernandez, von Harling, Pomarol)

$$
f_{\varphi}=1 / \sqrt{6} \quad f_{\psi}=1 / 2 \quad f_{V}=-1
$$

(B)

Mixing including gravity

$\gamma_{i j}=0$ unless $\tilde{h}_{i}=\tilde{h}_{j}$

in a 4 to 4 mixing, here including operators and amplitudes containing gravitons

Mixing including gravity

Leading order running of amplitudes with gravitons

no gravitons in the cut

Mixing including gravity

Leading order running of amplitudes with gravitons

- Only a handful of mixings (with at least one graviton) at $\mathrm{O}\left(\Lambda^{-2}\right)$

Mixing including gravity

$$
C_{F^{3}} \rightarrow C_{C F^{2}}
$$

auxiliary legs

$C_{C F^{2}} \rightarrow C_{C F^{2}}$

$$
C_{C F^{2}} \rightarrow C_{C^{2} \phi^{2}}
$$

Summary

- Motivation ($\gamma_{U V}$ encode fundamental properties of gravity EFTs)
- $\gamma_{U V}$ from on-shell amplitudes (gravity is included without effort)
- Non-renormalization from helicity considerations
- Bound on total helicity of tree-amplitudes (without and with gravity: \tilde{h})
- Non-renormalization with gravity
- Computation of RG (very convenient procedure)

