RG of GR from on-shell amplitudes with D. Haslehner, M. Ruhdorfer, J. Serra & A. Weiler arXiv 2109.06191

Pietro Baratella, TUM

Outline

- Motivation (what do we do and what for?)
- Formalism (why amplitudes?)
- Results of the analysis:
 - (modified) helicity rules
 - non-renormalization theorems lacksquare
 - computing the RG

RG of GR what do we do?

- we study the RG of effective theories that include gravity
 - encoded in β functions of couplings and UV anomalous dimensions γ_{UV} of operators
- work at the amplitude level, up to one loop and 4 external legs

RG of GR but M_P is 'large'!

- A graviton is expected to pay M_P^{-1} to interact with stuff
 - collider experiments where $E \lesssim \sqrt{s_{LHC}}$

• all the effects of gravity that go like $(E/M_P)^{\#}$ are typically small, e.g. in

RG of GR but M_P is 'large'!

- A graviton is expected to pay M_P^{-1} to interact with stuff
 - collider experiments where $E \lesssim \sqrt{s_{LHC}}$

• all the effects of gravity that go like $(E/M_P)^{\#}$ are typically small, e.g. in

this is *not* what we have in mind

RG of GR (how to read)

- gravity is a fundamental interaction, that we study with an EFT approach
- γ_{UV} of operators encode fundamental properties of the EFT of matter + gravity
- we provide methods to efficiently compute γ_{UV} (and compute some)

Example arXiv 2109.13937 (Arkani-Hamed, Huang, Liu, Remmen)

- Einstein-Maxwell effective theory: study deviations from R + FF
 - encoded in higher-dimensional operators as $C_{O}O$

 - in the deep IR:

 $C_{0} \sim \gamma_{0} \ln(s)$

control M/Q of extremal black-hole solutions (deviation away from unity)

$$S/\mu^2)$$

Example arXiv 2109.13937 (Arkani-Hamed, Huang, Liu, Remmen)

- Einstein-Maxwell effective theory: study deviations from R + FF
 - encoded in higher-dimensional operators as $C_{\mathcal{O}}\mathcal{O}$
 - control M/Q of extremal black-hole solutions (deviation away from unity)
 - in the deep IR:

 $C_{\mathcal{O}} \sim \gamma_{\mathcal{O}} \ln(s/\mu^2)$

sign controlled by weak-gravity conjecture

γ_{UV} from on-shell amplitudes

γ_{UV} from on-shell amplitudes

From loop to cut p_1 $d^4 q \ \delta(q^2) \delta((q+P)^2)$ p_2

+ other diagrams

From loop to cut

tree amplitudes with definite helicity, integrated over a phase space

• keeps all the information on the divergent (or $\ln \mu$) part

- 1. on-shell helicity amplitudes: extremely convenient when dealing with massless particles with $h \ge 1$ (no gauge redundancies)
- 2. tree-level: helicity bounds on tree amplitudes allow to obtain nonrenormalization theorems at loop level

Well defined operation (cut) that sends a loop integral to a product of <u>on-shell</u>

Non-renormalization from helicity

$$h_{\rm loop} = h_L + h_R$$

$$|h_{\text{loop}}| \le |h_L| +$$

(triangle inequality) 16

$$h_A \equiv \sum_i h_i$$

(all incoming)

Non-renormalization from helicity

$$h_{\rm loop} = h_L + h_R$$

$$|h_{\text{loop}}| \le |h_L| +$$

(triangle inequality)

$$h_A \equiv \sum_i h_i$$

(all incoming)

- h_{R}
- Limits the way in which divergences can appear, in a non-trivial way
- arXiv 1505.01844 (nonrenormalization without supersymmetry)

taken from arXiv: 2005.07129 (PB, Fernandez, Pomarol)

Non-renormalization from helicity

what makes this non-trivial?

all h = 0 (not obvious from Feynman diagrams)

$$|h_{\text{loop}}| \le |h_L| + |h_R|$$

• surprisingly, 4-point tree-level amplitudes in a marginal theory have (almost)

crossing

Non-renormalization from helicity

what makes this non-trivial?

all h = 0 (not obvious from Feynman diagrams)

$$|h_{100p}^{(4)}| \le |h_L^{(4)}| + |h_R^{(4)}| = 0$$

constraint on how infinities can appear in amplitudes with 4 external legs in a marginal theory

$$|h_{\text{loop}}| \le |h_L| + |h_R|$$

• surprisingly, 4-point tree-level amplitudes in a marginal theory have (almost)

Helicity bounds on tree amplitudes

- - direct computation
 - supersymmetric Ward identities (arXiv: 1607.05236)

Non-trivial bounds on total helicity of tree amplitudes (marginal couplings)

Helicity bounds on tree amplitudes

- - direct computation
 - supersymmetric Ward identities (arXiv: 1607.05236)

Non-trivial bounds on total helicity of tree amplitudes (marginal couplings)

can not arise from a holomorphic potential

Helicity bounds on tree amplitudes including minimally coupled gravity

- in marginal theories, $h_3 = +1$ or $h_3 = -1$, implying $h_4 = 0$
- =1,2 and $h_4=0$ no longer holds

• simple rule of thumb (maybe more than just this): factorization into $A_3 \times A_3$

• the rule also applies when including minimal coupling to gravity, but now $|h_3|$

Helicity bounds on tree amplitudes including minimally coupled gravity

- modified helicity \hat{h} , of which gravitons carry <u>one</u> unit instead of two
- all 3-point amplitudes (marginal + minimal) have $\tilde{h} = \pm 1$

Helicity bounds on tree amplitudes including minimally coupled gravity

- all 4-point amplitudes including minimally coupled gravitons that are factorizable (all except ' $\lambda\phi^4$ ') can have $|\,\tilde{h}\,|=0,2$
- it turns out that all those with $|\tilde{h}| = 2$ actually vanish (in line with the rule of thumb)
- helicity bound easily promoted by induction to $|\tilde{h}_n| \leq n-4$
- \tilde{h} extremely useful to express non-renormalization results including gravity (standard helicity does not allow to make clean statements)

Modified helicity KLT relations

- modified helicity has a natural interplay with the KLT relations
- $\tilde{\mathbf{i}}$ fact that h=0 in marginal theories)

• $\tilde{h} = 0$ can be seen as a consistency requirement coming from KLT (and the

Modified helicity (summary)

27

Non-renormalization including gravity

At 4 points and any order in M_P^{-1} in a minimally coupled marginal theory

Non-renormalization including gravity

$\gamma_{ij} = 0$ unle

in a 4 to 4 mixing, here including operators and amplitudes containing gravitons

ess
$$\tilde{h}_i = \tilde{h}_j$$

Non-renormalization including gravity beyond four point

 previous discussion suggests to organise EFT operators according to n and modified helicity

Non-renormalization including gravity beyond four point

- previous discussion suggests to organise EFT operators according to n and modified helicity
- non-mixing result expressed with red cone

Non-renormalization including gravity beyond four point

- previous discussion suggests to organise EFT operators according to n and modified helicity
- non-mixing result expressed with red cone
- possible divergences at order M_P^{-2} in a marginal theory minimally coupled to gravity must lie inside the blue cone

Computing the RG of GR

- mixing among operators including at least one graviton up to n=4 (red)
- divergences in generic minimally coupled theories at order M_P^{-2} (blue) and M_P^{-4} , up to four legs
- order M_P^{-4} anomalous dimensions are connected to positivity of Wilson coefficients at dimension 8

Computing the RG of GR divergences @ $O(M_P^{-2})$ in any minimally coupled theory

- divergences at this order only can involve h=0,±1/2 particles as external states
- therefore M_P^{-2} can only come from an internal graviton propagating

Computing the RG of GR divergences @ $O(M_P^{-2})$ in any minimally coupled theory

Computing the RG of GR divergences @ $O(M_P^{-2})$ in any minimally coupled theory

flavor and color 'flow' as if the graviton was not there (helps in providing fully general results)

flavor and color 'flow' as if the graviton was not there (helps in providing fully general results)

loop divergence as a 'function' of the corresponding tree amplitude (red)

$$\mathcal{A}_{\text{tree}}(1_{\bar{\psi}_1}, 2_{\psi_2}, 3_{\phi_3}, 4_{\phi_4}) = \left(\frac{T_s}{s} + \frac{Y_t}{t} + \frac{Y_u}{u}\right) \langle 13 \rangle [23]$$

flavor and color 'flow' as if the graviton was not there (helps in providing fully general results)

loop divergence as a 'function' of the corresponding tree amplitude (red)

$$\mathcal{A}_{\text{tree}}(1_{\bar{\psi}_1}, 2_{\psi_2}, 3_{\phi_3}, 4_{\phi_4}) = \left(\frac{T_s}{s} + \frac{Y_t}{t} + \frac{Y_u}{u}\right) \langle 13\rangle[23]$$

$$\overline{\mathcal{A}_{\phi_3}, 4_{\phi_4}} = -\frac{7}{64\pi^2 M_{\text{Pl}}^2 \epsilon} \left(3T_s + Y_t + Y_u\right) \langle 13\rangle[23]$$

flavor and color 'flow' as if the graviton was not there (helps in providing fully general results)

loop divergence as a 'function' of the corresponding tree amplitude (red)

$$\mathcal{A}_{\text{tree}}(1_{\bar{\psi}_1}, 2_{\psi_2}, 3_{\phi_3}, 4_{\phi_4}) = \left(\frac{T_s}{s} + \frac{Y_t}{t} + \frac{Y_u}{u}\right) \langle 13\rangle[23]$$
$$\overline{\mathcal{B}_{\phi_3}, 4_{\phi_4}} = -\frac{7}{64\pi^2 M_{\text{Pl}}^2 \epsilon} \left(3T_s + Y_t + Y_u\right) \langle 13\rangle[23]$$

... and similarly for all other relevant helicity configurations

Computing the RG of GR vanishing of 'class (B)'

connected to the non-renormalization of $T^{\mu\nu}$ (graviton couples to matter through $h_{\mu\nu}T^{\mu\nu}$)

$$\langle 0 | T^{\mu\nu} | 3,4 \rangle_{\rm div} = 0$$

Computing the RG of GR vanishing of 'class (B)'

connected to the non-renormalization of $T^{\mu\nu}$ (graviton couples to matter through $h_{\mu\nu}T^{\mu\nu}$)

$$\langle 0 | T^{\mu\nu} | 3,4 \rangle_{\rm div} = 0$$

second diagram proportional to the <u>collinear anomalous dimension</u> of particle 3 (and its antiparticle 4)

$\gamma_{\rm coll}$ from $T^{\mu\nu}$ non-renormalization

- angular analysis shows that $T^{\mu\nu}$ has J=2
- first diagram proportional to a sum over certain J=2 partial wave coefficients
- second diagram proportional to γ_{coll}
- from the vanishing of their sum we get a new formula to express collinear anomalous dimensions

$\gamma_{\rm coll}$ from $T^{\mu\nu}$ non-renormalization

 new formula to express collinear anomalous dimensions in terms of partial wave coefficients (marginal couplings only)

$$\gamma_{\text{coll}}^{(\Phi)} = \frac{1}{16\pi^2} \sum_{\Phi'} \frac{f_{\Phi'}}{f_{\Phi}} a_{\Phi'\bar{\Phi}\to\Phi}^{(2)}$$

 $f_{\varphi} = 1/\sqrt{6} \ f_{\psi} = 1/2 \ f_{V} = -1$

^{2010.13809 (}PB, Fernandez, von Harling, Pomarol)

Mixing including gravity

in a 4 to 4 mixing, here including operators and amplitudes containing gravitons

Mixing including gravity <u>Leading order running of amplitudes with gravitons</u>

Mixing including gravity Leading order running of amplitudes with gravitons

• Only a handful of mixings (with at least one graviton) at O(Λ^{-2})

Summary

- Motivation (γ_{UV} encode fundamental properties of gravity EFTs)
- γ_{UV} from on-shell amplitudes (gravity is included without effort)
- Non-renormalization from helicity considerations
- Bound on total helicity of tree-amplitudes (without and with gravity: \tilde{h})
- Non-renormalization with gravity
- Computation of RG (very convenient procedure)