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Outline

 Motivation (what do we do and what for?)
 Formalism (why amplitudes?)
* Results of the analysis:

* (modified) helicity rules

* non-renormalization theorems

 computing the RG



RG of GR

what do we do?

» we study the RG of effective theories that include gravity

» encoded in f functions of couplings and UV anomalous dimensions ¥y,
of operators

o work at the amplitude level, up to one loop and 4 external legs



RG of GR

but Mp is ‘large’!

» A graviton is expected to pay M, I to interact with stuff

- all the effects of gravity that go like (E/Mp)’
collider experiments where £ S 4 /S7
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8 h™~

are typically small, e.g. In
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this Is not what

4 . .
we have in mind



RG of GR

(how to read)

e gravity is a fundamental interaction, that
we study with an EFT approach

Yy Of operators encode fundamental
properties of the EFT of matter + gravity

* we provide methods to efficiently
compute y,,, (@nd compute some)



Example
arXiv 2109.13937 (Arkani-Hamed, Huang, Liu, Remmen)

* Einstein-Maxwell effective theory: study deviations from R + FF

» encoded in higher-dimensional operators as C;0

» control M/Q of extremal black-hole solutions (deviation away from unity)

* In the deep IR:

Cy ~ Vo In(s/u)
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sign controlled by weak-gravity conjecture




vy from on-shell amplitudes
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vy from on-shell amplitudes
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| <Jf

/e ~Inu ~ RG |

S e ———— . e e e A ]




iIntegrated

over the
two-particle
phase space

taken from arXiv: 2005.07129 (PB, Fernandez, Pomarol)
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From loop to cut

pl . N(Q)ab X p3

[d4q X +  other diagrams

N(g + P),_,
P2 (9 + P)> P4
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From loop to cut

&

pl \‘\ N(Q)ab

5(q*)8((q + P)*)

+

other diagrams



From loop to cut

p 1 ‘\‘ N (Q)ab

5(q*)8((q + P)*)

pz' N(q_l_P)cd

+

other diagrams



From loop to cut

* Well defined operation (cut) that sends a loop integral to a product of on-shell

tree amplitudes with definite helicity, integrated over a phase space

» keeps all the information on the divergent (or Iny) part

1. on-shell helicity amplitudes: extremely convenient when dealing with
massless particles with 4 > 1 (no gauge redundancies)

2. tree-level: helicity bounds on tree amplitudes allow to obtain non-
renormalization theorems at loop level
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Non-renormalization from helicity R

(72 St
+:F
: hy, = Z h,
— ) JdLIPS : i
l - E (all incoming)

hloop — hL T hR

|h100p| < |hL| T |hR|

(triangle inequality)
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Non-renormalization from helicity

@ D JdLIPS
1 cuts
* Limits the way in which

hl()op = hy + hy divergences can appear,
/ in a non-trivial way

i .

E

(all incoming)

renormalization without
supersymmetry)

e arXiv 1505.01844 -
|hloop|S|hL|+|hR| arXiv 1505.0 (non

(triangle inequality)
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taken from arXiv: 2005.07129 (PB, Fernandez, Pomarol)
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Non-renormalization from helicity

- what makes this non-trivial? | Migop | < 11| + | g

o surprisingly, 4-point tree-level amplitudes in a marginal theory have (almost)
all h = 0 (hot obvious from Feynman diagrams)

/ /

m + crossing = O

e %
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Non-renormalization from helicity

- what makes this non-trivial? | Migop | < 11| + | g

o surprisingly, 4-point tree-level amplitudes in a marginal theory have (almost)
all h = 0 (hot obvious from Feynman diagrams)

4 4 4
1D | < O]+ 7] =0

constraint on how infinities can appear in amplitudes
with 4 external legs in a marginal theory
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Helicity bounds on tree amplitudes

* Non-trivial bounds on total helicity of tree amplitudes (marginal couplings)
e direct computation

* supersymmetric Ward identities (arXiv: 1607.05236)

' ' 4

r.0 h| =2
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Helicity bounds on tree amplitudes

* Non-trivial bounds on total helicity of tree amplitudes (marginal couplings)
e direct computation

» supersymmetric Ward identities (arXiv: 1607.05236)

'4

can not arise from a
holomorphic potential
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Helicity bounds on tree amplitudes

including minimally coupled gravity

» simple rule of thumb (maybe more than just this): factorization into A; X A;

o — > <

h> (0 h <(

* in marginal theories, ha=+1 or hz=-1, implying h4=0

* the rule also applies when including minimal coupling to gravity, but now |h3]
=1,2 and h4=0 no longer holds
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Helicity bounds on tree amplitudes

including minimally coupled gravity

D, ik 2
>3 (I)h3 >M2 % 2
(I)h2 d T 9
hl =1 h| = 2 h| =2

 modified helicity iz, of which gravitons carry one unit instead of two

. all 3-point amplitudes (marginal + minimal) have & = % 1
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Helicity bounds on tree amplitudes

including minimally coupled gravity

e all 4-point amplitudes mcludlng minimally coupled gravitons that are
factorizable (all except ‘A¢*) can have |h| = 0,2

+ it turns out that all those with || = 2 actually vanish (in line with the rule of
thumb)

» helicity bound easily promoted by induction to \izn\ <n-4

. h extremely useful to express non-renormalization results including gravity
(standard helicity does not allow to make clean statements)

25



Modified helicity

KLT relations

V_ (02 V_ ¢
1 1
| 4 a
: @
¢ Y ¢ ¢
— iL(Ag av) + %hg(Ag av)

 modified helicity has a natural interplay with the KLT relations

« 1 = 0 can be seen as a consistency requirement coming from KLT (and the
fact that h=0 in marginal theories)
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Modified helicity

(summary)



Non-renormalization including gravity

)=z )8 1B
CULS

At 4 points and any order in M]jl
in a minimally coupled marginal theory



Non-renormalization including gravity

— —— e — = —— —_— —— ,

| yl] —0 unles h — h

. e ) — -

—— i —— R — — —— = _ = = —_——

in a 4 to 4 mixing, here mcludlng operators
and amplitudes containing gravitons

|
M
-
S
N



Non-renormalization including gravity

beyond four point

h ‘ 5 * previous discussion suggests to
[ | 1/A organise EFT operators according to n
and modified helicity
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Non-renormalization including gravity

beyond four point

5 * previous discussion suggests to
1/A organise EFT operators according to n
and modified helicity

>

* non-mixing result expressed with red
cone
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Non-renormalization including gravity

beyond four point

h ‘ 5 * previous discussion suggests to
[ | 1/A organise EFT operators according to n
and modified helicity

* non-mixing result expressed with red
cone

« possible divergences at order M]Zz in a

marginal theory minimally coupled to
" gravity must lie inside the blue cone
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Computing the RG of GR

>

1/A?

1 1
01 | Ype?D, | 4
,' ¢4D2
3 4 :

* mixing among operators including at
least one graviton up to n=4 (red)

» divergences in generic minimally
coupled theories at order Mgz (blue)

and M‘4, up to four legs

e Order MIZ4 anomalous dimensions are

connected to positivity of Wilson
coefficients at dimension 8

33



Computing the RG of GR

divergences @ O()M;7) in any minimally coupled theory

» divergences at this order only can

2 . .
1/A involve h=0,%1/2 particles as external
states

>

» therefore M, 2 can only come from an
iInternal graviton propagating
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Computing the RG of GR

divergences @ O()M;7) in any minimally coupled theory
3 1 3

\ 4 2 : 4

3 1 3

(B)

(4)



Computing the RG of GR

divergences @ O()M;7) in any minimally coupled theory

: vanishes upon
: \ ) L - 4§ — .
§ ] summing
! y over all elements
in the class
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Computing the RG of GR

divergences @ O()M;7) in any minimally coupled theory

g 1 3 1 1 3
flavor and color e §
‘flow’ as if the ;
graviton was not i 5 43 9 4
there (helps in

providing fully
general results) $ 5
F 1 \ 3 3 1 3
.
' &‘
f -

- (B)
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Computing the RG of GR

divergences @ O()M;7) in any minimally coupled theory

loop divergence as a ‘function’ of the
corresponding tree amplitude (red)
flavor and color "
‘flow’ as if the T, Y, Y,
graviton was not Atree 1¢172¢273¢374¢4) — (s | P | u) <13>[23]7
there (helps in

providing fully
general results)
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Computing the RG of GR

divergences @ O()M;7) in any minimally coupled theory

loop divergence as a ‘function’ of the
corresponding tree amplitude (red)
flavor and color "
‘flow’ as if the T, Y, Y,
graviton was not Atree 1¢172¢273¢374¢4) — (s | P | u) <13>[23]7
there (helps in

providing fully |
general results) . 7
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Computing the RG of GR

divergences @ O()M;7) in any minimally coupled theory

loop divergence as a ‘function’ of the
corresponding tree amplitude (red)
flavor and color "
‘flow’ as if the T, Y, Y,
graviton was not Atree 1¢1>2¢2>3¢374¢4) — (s | P | u) <13>[23]>
there (helps in

providing fully

general results) i 7

AUV(]"QZ17 2¢z>3¢3>4¢4) - 642 M2 €
Pl

(3T, +Y; +Y,)(13)[23].

y 9 / \54 ‘ ... and similarly for all other relevant

helicity configurations

g rala- bIEYaY . B7. L. P BN =R = o P \ead T - DG
— € 5 = B < = 3 &
B - A

40



Computing the RG of GR

vanishing of ‘class (B)’

connected to the non-renormalization
of TH" (graviton couples to matter
through A, T")

vanishes upon

ti 2 _
(0]7"]34)4, =0 |
> T /d1v i ! over all elements

In the class

D\
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Computing the RG of GR

vanishing of ‘class (B)’

connected to the non-renormalizaton | .  ’

of T#* (graviton couples to matter :
1%

through A, T")

¥ 9 vanishes.upon
<O | T//tl/ | 3’4>le —_ O ‘ overS Lajllrlngl]elrr]r?ents

In the class

P 3
second diagram proportional to the ﬁ
collinear anomalous dimension of i
particle 3 (and its antiparticle 4) E oo -+
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Y. from 7" non-renormalization

 angular analysis shows that 7#* has J=2

 first diagram proportional to a sum over
certain J=2 partial wave coefficients

» second diagram proportional to .

* from the vanishing of their sum we get a new
formula to express collinear anomalous
dimensions
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Y. from 7" non-renormalization

* new formula to express collinear anomalous
dimensions in terms of partial wave
coefficients (marginal couplings only)

2010.13809 (PB, Fernandez, von Harling, Pomarol)

f,=11/6 f,=1/2 f,=—1
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Mixing including gravity

— —_— —_ —— _— - —_— —
—_— T e —— e — — —

| 7’1] 0 unless h = h

— — e — e — —— —_ — S _ — =

in a 4 to 4 mixing, here mcludlng operators
and amplitudes containing gravitons
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Mixing including gravity

Leading order running of amplitudes with gravitons

no gravitons in the cut

O(A ™) »/
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Mixing including gravity

Leading order running of amplitudes with gravitons

 Only a handful of mixings (with at least one graviton) at O(A_z)
no gravitons in the cut

O(A ™) »/

O(A~?)
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Mixing including gravity

Cor
h. hy . ¢
% IR SR AAA hy
/ Crro —> C
auxiliary legs " C2¢2
Vi h ' 9 ¢ s ?
CC2¢2 J:O @
VJI: hy QE . ¢ d B QB

Ccz¢2 — CC2¢2
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Summary

« Motivation (y;,, encode fundamental properties of gravity EFTs)

« Yy from on-shell amplitudes (gravity is included without effort)

 Non-renormalization from helicity considerations

 Bound on total helicity of tree-amplitudes (without and with gravity: iz)

 Non-renormalization with gravity

 Computation of RG (very convenient procedure)
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