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Outline

• Motivation (what do we do and what for?)


• Formalism (why amplitudes?)


• Results of the analysis:


• (modified) helicity rules


• non-renormalization theorems


• computing the RG
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RG of GR
what do we do?

• we study the RG of effective theories that include gravity


• encoded in  functions of couplings and UV anomalous dimensions  
of operators


• work at the amplitude level, up to one loop and 4 external legs

β γUV
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RG of GR
but MP is ‘large’!

• A graviton is expected to pay  to interact with stuff


• all the effects of gravity that go like  are typically small, e.g. in 
collider experiments where 

M−1
P

(E/MP)#

E ≲ sLHC

q q̄

g+ h−−
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RG of GR
but MP is ‘large’!

• A graviton is expected to pay  to interact with stuff


• all the effects of gravity that go like  are typically small, e.g. in 
collider experiments where 

M−1
P

(E/MP)#

E ≲ sLHC

q q̄

g+ h−−

this is not what

we have in mind
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RG of GR

• gravity is a fundamental interaction, that 
we study with an EFT approach


•  of operators encode fundamental 
properties of the EFT of matter + gravity


• we provide methods to efficiently 
compute  (and compute some)

γUV

γUV

(how to read)

Λ

E
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Example
arXiv 2109.13937 (Arkani-Hamed, Huang, Liu, Remmen)

• Einstein-Maxwell effective theory: study deviations from R + FF


• encoded in higher-dimensional operators as 


• control M/Q of extremal black-hole solutions (deviation away from unity)


• in the deep IR:

C𝒪𝒪

C𝒪 ∼ γ𝒪 ln(s/μ2)
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Example
arXiv 2109.13937 (Arkani-Hamed, Huang, Liu, Remmen)

• Einstein-Maxwell effective theory: study deviations from R + FF


• encoded in higher-dimensional operators as 


• control M/Q of extremal black-hole solutions (deviation away from unity)


• in the deep IR:

C𝒪𝒪

C𝒪 ∼ γ𝒪 ln(s/μ2)
sign controlled by weak-gravity conjecture
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 from on-shell amplitudesγUV

1
ε

= ∑
cuts

∫ dLIPS tree treeLOOP
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 from on-shell amplitudesγUV

1
ε

= ∑
cuts

∫ dLIPS tree treeLOOP

1/ε ∼ ln μ ∼ RG
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electron dipole

1
ε

=

+ +

integrated 
over the


two-particle 
phase space

taken from arXiv: 2005.07129 (PB, Fernandez, Pomarol)
11



From loop to cut
p1

p2

p3

p4

∫ d4q

N(q)ab

q2

N(q + P)cd

(q + P)2

+     other diagrams×
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From loop to cut
p1

p2

p3

p4

∫ d4q +     other diagramsδ(q2)δ((q + P)2)

N(q + P)cd

N(q)ab
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From loop to cut
p1

p2

p3

p4

∫ d4q +     other diagramsδ(q2)δ((q + P)2)

N(q + P)cd

N(q)ab

dLIPS

Σσ ϵa(σ)ϵb(σ)
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From loop to cut

• Well defined operation (cut) that sends a loop integral to a product of on-shell 
tree amplitudes with definite helicity, integrated over a phase space


• keeps all the information on the divergent (or ln ) part 

1. on-shell helicity amplitudes: extremely convenient when dealing with 
massless particles with  (no gauge redundancies)


2. tree-level: helicity bounds on tree amplitudes allow to obtain non-
renormalization theorems at loop level

μ

h ≥ 1
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hA ≡ ∑
i

hi

Non-renormalization from helicity

1
ε

∑
cuts

∫ dLIPS L Rloop =

hloop = hL + hR

|hloop | ≤ |hL | + |hR |

(all incoming)

(triangle inequality)

± ∓

h=-2
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hA ≡ ∑
i

hi

Non-renormalization from helicity

1
ε

∑
cuts

∫ dLIPS L Rloop =

hloop = hL + hR

|hloop | ≤ |hL | + |hR |

(all incoming)

(triangle inequality)

± ∓

• Limits the way in which 
divergences can appear, 
in a non-trivial way


• arXiv 1505.01844 (non-
renormalization without 
supersymmetry)
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electron dipole

1
ε

=

+ +
taken from arXiv: 2005.07129 (PB, Fernandez, Pomarol)

h=-2 h=-2

h=-2
h=-2

h=-2

h=0

h=0 h=0

h=0
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Non-renormalization from helicity

• what makes this non-trivial?


• surprisingly, 4-point tree-level amplitudes in a marginal theory have (almost) 
all h = 0 (not obvious from Feynman diagrams)

|hloop | ≤ |hL | + |hR |

e ē

γ− γ−

+  crossing   =   0
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Non-renormalization from helicity

• what makes this non-trivial?


• surprisingly, 4-point tree-level amplitudes in a marginal theory have (almost) 
all h = 0 (not obvious from Feynman diagrams)

|hloop | ≤ |hL | + |hR |

|h(4)
loop | ≤ |h(4)

L | + |h(4)
R | = 0

constraint on how infinities can appear in amplitudes

with 4 external legs in a marginal theory
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Helicity bounds on tree amplitudes

• Non-trivial bounds on total helicity of tree amplitudes (marginal couplings)


• direct computation


• supersymmetric Ward identities (arXiv: 1607.05236)

ψ−

ψ−

ψ−

ψ−

ϕ ϕ̄ |h | = 2
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Helicity bounds on tree amplitudes

• Non-trivial bounds on total helicity of tree amplitudes (marginal couplings)


• direct computation


• supersymmetric Ward identities (arXiv: 1607.05236)

ψ−

ψ−

ψ−

ψ−

ϕ ϕ̄ can not arise from a

holomorphic potential
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Helicity bounds on tree amplitudes
including minimally coupled gravity

• simple rule of thumb (maybe more than just this): factorization into A3 × A3

tree X

h > 0 h < 0

• in marginal theories, h3=+1 or h3=-1, implying h4=0


• the rule also applies when including minimal coupling to gravity, but now |h3|
=1,2 and h4=0 no longer holds

23



Helicity bounds on tree amplitudes
including minimally coupled gravity

• modified helicity , of which gravitons carry one unit instead of two


• all 3-point amplitudes (marginal + minimal) have 

h̃

h̃ = ± 1
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Helicity bounds on tree amplitudes
including minimally coupled gravity

• all 4-point amplitudes including minimally coupled gravitons that are 
factorizable (all except ‘ ’) can have 


• it turns out that all those with  actually vanish (in line with the rule of 
thumb) 

• helicity bound easily promoted by induction to 


•  extremely useful to express non-renormalization results including gravity 
(standard helicity does not allow to make clean statements)

λϕ4 | h̃ | = 0,2

| h̃ | = 2

| h̃n | ≤ n − 4

h̃
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Modified helicity
KLT relations

• modified helicity has a natural interplay with the KLT relations


•  can be seen as a consistency requirement coming from KLT (and the 
fact that h=0 in marginal theories)
h̃ = 0
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Modified helicity
(summary)

h̃ [                ]  =  +1,-1

min,

margh̃ [                ]  =  0

graviton
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Non-renormalization including gravity

1
ε

= ∑
cuts

∫ dLIPS min,

margloop

min,

marg

h̃loop = 0
At 4 points and any order in 


in a minimally coupled marginal theory
M−1

P
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Non-renormalization including gravity

1
ε

= ∑
cuts

∫ dLIPS X
min,

margX

Ci Cj

   unless   γij = 0 h̃i = h̃j
in a 4 to 4 mixing, here including operators


and amplitudes containing gravitons
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Non-renormalization including gravity
beyond four point

• previous discussion suggests to 
organise EFT operators according to n 
and modified helicity

1/Λ2
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Non-renormalization including gravity
beyond four point

• previous discussion suggests to 
organise EFT operators according to n 
and modified helicity


• non-mixing result expressed with red 
cone

1/Λ2
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Non-renormalization including gravity
beyond four point

• previous discussion suggests to 
organise EFT operators according to n 
and modified helicity


• non-mixing result expressed with red 
cone


• possible divergences at order  in a 
marginal theory minimally coupled to 
gravity must lie inside the blue cone

M−2
P

1/Λ2
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Computing the RG of GR

• mixing among operators including at 
least one graviton up to n=4 (red)


• divergences in generic minimally 
coupled theories at order  (blue) 
and , up to four legs


• order  anomalous dimensions are 
connected to positivity of Wilson 
coefficients at dimension 8

M−2
P

M−4
P

M−4
P

1/Λ2
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Computing the RG of GR

• divergences at this order only can 
involve h=0, 1/2 particles as external 
states


• therefore  can only come from an 
internal graviton propagating

±

M−2
P

1/Λ2

divergences @ O( ) in any minimally coupled theoryM−2
P
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Computing the RG of GR
divergences @ O( ) in any minimally coupled theoryM−2

P
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Computing the RG of GR
divergences @ O( ) in any minimally coupled theoryM−2

P

vanishes upon 
summing


over all elements 
in the class
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Computing the RG of GR
divergences @ O( ) in any minimally coupled theoryM−2

P

flavor and color 
‘flow’ as if the 

graviton was not 
there (helps in 
providing fully 
general results)
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Computing the RG of GR
divergences @ O( ) in any minimally coupled theoryM−2

P

flavor and color 
‘flow’ as if the 

graviton was not 
there (helps in 
providing fully 
general results)

loop divergence as a ‘function’ of the 
corresponding tree amplitude (red)
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Computing the RG of GR
divergences @ O( ) in any minimally coupled theoryM−2

P

flavor and color 
‘flow’ as if the 

graviton was not 
there (helps in 
providing fully 
general results)

loop divergence as a ‘function’ of the 
corresponding tree amplitude (red)
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Computing the RG of GR
divergences @ O( ) in any minimally coupled theoryM−2

P

flavor and color 
‘flow’ as if the 

graviton was not 
there (helps in 
providing fully 
general results)

loop divergence as a ‘function’ of the 
corresponding tree amplitude (red)


… and similarly for all other relevant 
helicity configurations
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Computing the RG of GR
vanishing of ‘class (B)’

vanishes upon 
summing


over all elements 
in the class

connected to the non-renormalization 
of  (graviton couples to matter 
through )


Tμν

hμνTμν

⟨0 |Tμν |3,4⟩div = 0
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Computing the RG of GR
vanishing of ‘class (B)’

vanishes upon 
summing


over all elements 
in the class

connected to the non-renormalization 
of  (graviton couples to matter 
through )


second diagram proportional to the 
collinear anomalous dimension of 
particle 3 (and its antiparticle 4)

Tμν

hμνTμν

⟨0 |Tμν |3,4⟩div = 0
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 from  non-renormalizationγcoll Tμν

• angular analysis shows that  has J=2


• first diagram proportional to a sum over 
certain J=2 partial wave coefficients


• second diagram proportional to 


• from the vanishing of their sum we get a new 
formula to express collinear anomalous 
dimensions

Tμν

γcoll

J=2

J=2
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 from  non-renormalizationγcoll Tμν

• new formula to express collinear anomalous 
dimensions in terms of partial wave 
coefficients (marginal couplings only)

J=2

J=2

γ(Φ)
coll =

1
16π2 ∑

Φ′￼

fΦ′￼

fΦ
a(2)

Φ′￼Φ̄′￼→ΦΦ̄

fφ = 1/ 6 fψ = 1/2 fV = − 1

2010.13809 (PB, Fernandez, von Harling, Pomarol)

reg
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Mixing including gravity

1
ε

= ∑
cuts

∫ dLIPS X
min,

margX

Ci Cj

   unless   γij = 0 h̃i = h̃j
in a 4 to 4 mixing, here including operators


and amplitudes containing gravitons
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Mixing including gravity

1
ε

= ∑
cuts

∫ dLIPS X
min,

margX

Ci Cj

Leading order running of amplitudes with gravitons

no gravitons in the cut

O( )Λ−2
O( )Λ−2
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Mixing including gravity

1
ε

= ∑
cuts

∫ dLIPS X
min,

margX

Ci Cj

Leading order running of amplitudes with gravitons

no gravitons in the cut

O( )Λ−2
O( )Λ−2

• Only a handful of mixings (with at least one graviton) at O( )Λ−2
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Mixing including gravity

auxiliary legs

J=0

J=1

J=2

CF3 → CCF2 CCF2 → CC2ϕ2

CCF2 → CCF2 CC2ϕ2 → CC2ϕ2

48



Summary

• Motivation (  encode fundamental properties of gravity EFTs)


•   from on-shell amplitudes (gravity is included without effort)


• Non-renormalization from helicity considerations


• Bound on total helicity of tree-amplitudes (without and with gravity: )


• Non-renormalization with gravity


• Computation of RG (very convenient procedure)

γUV

γUV

h̃
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