HERA Achievements

- Accurate measurement of the inclusive structure function F_2 gives access to the proton structure at low x > 0.0001.
- Checks of conventional QCD evolution + accurate predictions for the LHC.
- Indications that at lowest x and lowest Q^2 we may start entering high density regime.
- Total luminosity of $\sim 1~{\rm fb^{-1}}$ allowed to measure with statistically limited accuracy
 - CC processes: flavor decomposition at higher x
 - DVCS: proton structure in 3D.
- Reduced proton beam energy runs at the end of HERA operation allowed to determine structure function F_L : direct measure of the gluon.

1

 $\mathbf{2}$

Stat. limited processes at HERA

Measurements of F_L , CC cross section, DVCS would benefit greatly from higher luminosity.

High density regime at HERA?

Significant change in solution when excluding data at $Q^2 < 5 \text{ GeV}^2$, most pronounced when using combined HERA-I and low E_p data.

Results from the combined HERA-I dataset Evidence for deviations from NLO DGLAP

- \bullet at low $Q^2 \lesssim 10 \mbox{ GeV}^2:$ deviations from NLO DGLAP
- deviations compatible with resummation / saturation, but not with NNLO

(F. Caola, DIS2010)

What was not done at HERA

- Beyond *ep* scattering:
 - Structure function F_2 does not provide flavor decomposition information at low x: $F_2 \sim 4/9(U + \overline{U}) + 1/9(D + \overline{D})$, \rightarrow run in *ed* mode.
 - High density QCD regime is achieved with eA scattering. Measurements of F_2^A/F_2^p , F_L^a/F_L^p and exclusive processes provide new dimension for accurate QCD studies.
- Higher luminosities:
 - Accurate measurement of CC, CC + tagged c (strangeness at medium x, NuTeV anomaly.)
 - Proton structure in 3D with DVCS.
- Higher *e* energy:
 - Extend range to low x.
 - More symmetric beams: easier to study forward flows.
- Detector optimization: Better instrumentation for low x physics. Measurements in high-background environment (F_L) benefits from modern highly segmented calorimetry/light tracking.

HERA ++ vs other projects

Project	$E_p \times E_p, \mathrm{GeV}^2$	Luminosity, $\mathrm{cm}^{-2}\mathrm{s}^{-1}$	Year
ELIC	$30 \times 10 \rightarrow 250 \times 10$	$0.5 - 4.5 imes 10^{33}$	202?
eRICH	$250 \times 10 \rightarrow 250 \times 30$	3×10^{33}	202?
LHeC	7000×70	5×10^{33}	2025 +
HERA ++	$920 \times 30 \rightarrow 920 \times 50$???	202?

• *ep* colliders are under active discussion in USA and Europe.

- "High intensity polarized" but at lower energy in USA (eRICH and ELIC) and "High energy frontier" at CERN (LHeC). Projects are supported by both high energy and nuclear physics communities.
- HERA ++ project fills the gap between the other projects, has unique advantages.