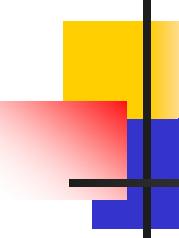


HERA ep (eN) Options


- HERA is a worldwide unique facility
- Accelerator still exists (pre-accelerator not anymore)
- HERA was shut down due to 'political' reasons when discussion was made
- There is still significant interest in doing ep/eN collider physics
 - In particular, QCD (forward) physics, diffraction, GPDs,....
- Future ep(N) facilities under discussion
 - EIC (eRHIC, ELIC)
 - LHeC
 - ENC at GSI
- Would HERA operation still make any sense?

HERA Low Luminosity Operation

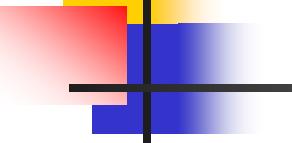
Major challenge of ep collider design and physics program:

- High luminosity requires focusing magnets close to the IP
- Physics requires detector acceptance down to very small angles
- HERA I:
 - $L \sim 2 \cdot 10^{31} \text{ cm}^{-2}\text{s}^{-1}$, detectors with some forward/backward acceptance
- HERA II:
 - $L \sim 5 \cdot 10^{31} \text{ cm}^{-2}\text{s}^{-1}$, detectors with very limited forward/backward acceptance
- H1 and ZEUS detectors were designed for high- x , Q^2 physics. Emphasis was on central detector, not on small angle coverage.
- Low x , Q^2 QCD studies require full acceptance, but not very high luminosity
 - $L \leq 1 \cdot 10^{31} \text{ cm}^{-2}\text{s}^{-1}$, i.e. HERA I like with new full acceptance IR would be sufficient
 - Need new, dedicated (small) detector, as proposed by A.Callwell, H.Kowalski et al. for HERA III proposal and recently for eRHIC
- Using deuterons or ions was discussed within the DESY III proposal

High Luminosity Options

Recent progress in ep collider design

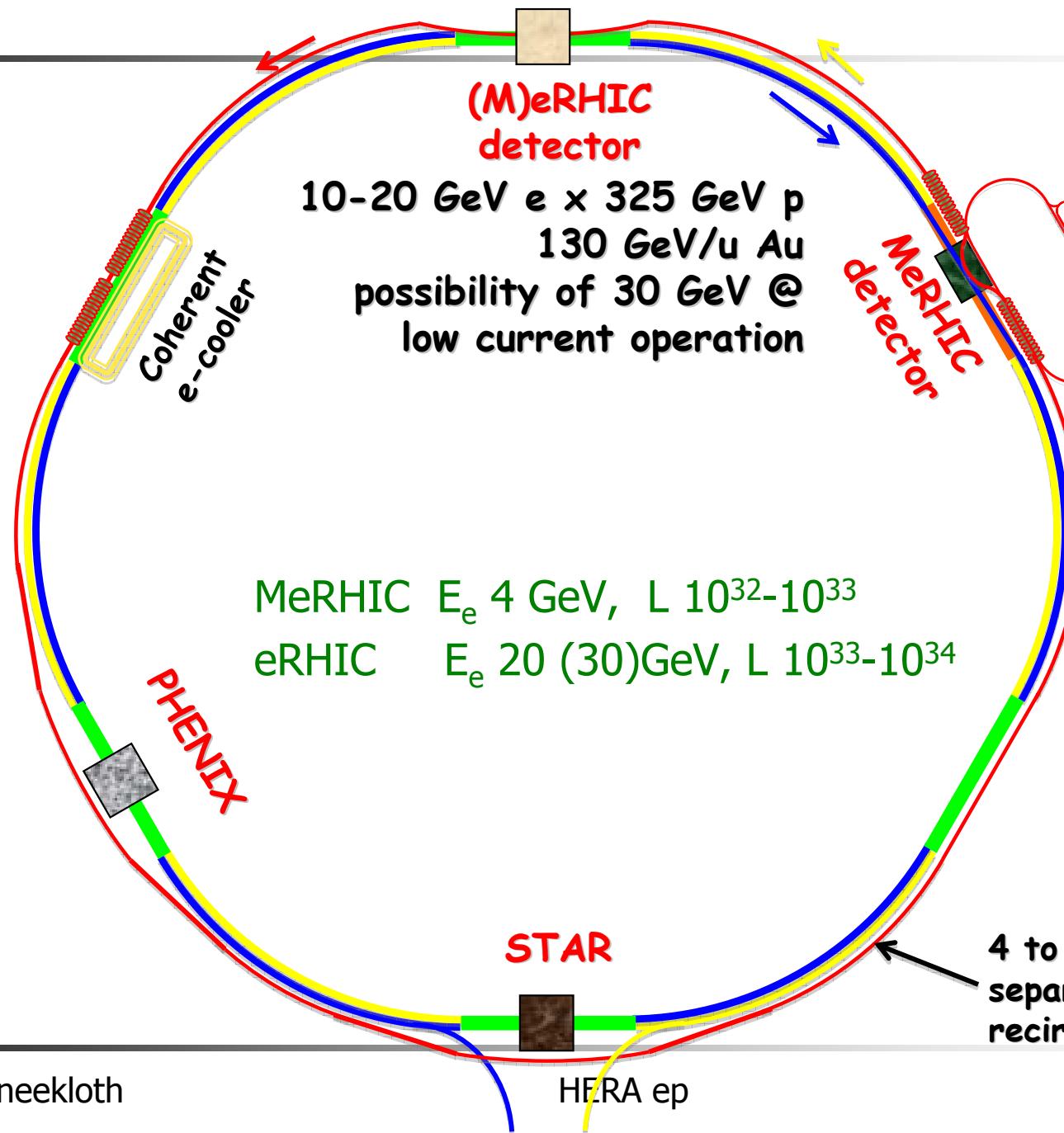
eRHIC :


- Design started with ring-ring version ($E_e = 10\text{GeV}$ on 250 GeV p (100 GeV/n ions)) with $L \sim 10^{32}$
- After detailed study found that linac-ring version has 5-10 times higher luminosity
- Other significant advantage of linac-ring is larger distance of electron focusing magnets from IP due to much smaller electron beam emittance. IR layout with much better forward/backward detector acceptance possible

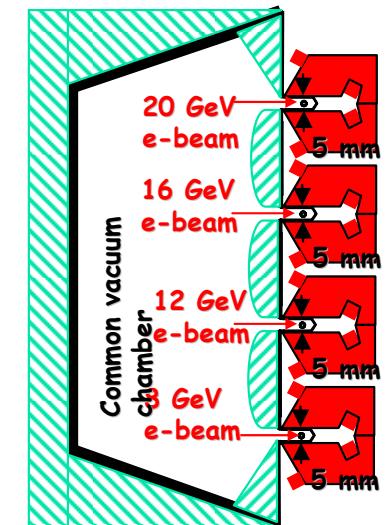
	MeRHIC		eRHIC	
$E_e p_e$ (GeV)	250	4	325	20
$L \cdot 10^{33}$ ($\text{cm}^{-2}\text{s}^{-1}$)	0.1	(1)	2.8	(14)

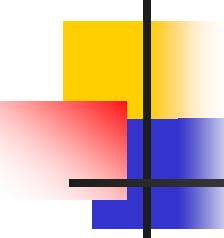
(with coherent electron cooling)

- Expect that similar luminosity would be possible with HERA


ERL-based eRHIC Design

Gap 5 mm total
0.3 T for 30 GeV




U. Schneekloth

V. Litvinenko

2 x 200 m SRF linac
4 (5) GeV per pass
5 (4) passes

Conclusion

- “Low” ($\leq 1 \text{ } 10^{31} \text{ cm}^{-2}\text{s}^{-1}$) ep HERA operation would still be very interesting with a dedicated detector with emphasis on small angle acceptance (similar to one of the HERA III proposals)
- Would need
 - New proton pre-accelerator
 - Electron transfer line DESY to HERA
 - Upgrades of HERA components ((new) control system, RF systems,...)
 - New interaction region
 - New detector
- High luminosity operation ($10^{33} - 10^{34} \text{ cm}^{-2}\text{s}^{-1}$) with full acceptance detector in principle possible using linac-ring technology
- Would need, in addition to “low” luminosity option
 - New energy recovery linac with SC cavities based on TESLA/ILC/XFEL technology
 - Coherent electron cooling for very high luminosity