Use of Allpix² in the LUXE experiment: **Digitizing the Hits of the Tracker Sub-detector**

Arka Santra, Noam Tal Hod **Department of Particle Physics and Astrophysics October 5, 2021** Weizmann Institute of Science **LUXE Simulation and Analysis Meeting**

In the previous presentation:

- Custom electric field functionality of Allpix² proves to be very useful.
 - After lots of efforts, the result from our simulation is now very close to the Allpix paper (2002:12602) result.
- Applied the custom electric field to particle gun relevant for LUXE tracker.
 - The cluster energy and size distribution for low energetic electron beam is markedly different from that of the high energetic signal positron.
- Progress over the last month: use the LUXE tracker energy deposition as input to Allpix²
 - Digitize the LUXE tracker hits using Allpix².
 - Used the CDR simulation files for signal and background.
 - Look at the clusters made by high energetic positron signals with low energetic electron background.

Arka Santra

Timing distribution

From the simulation, found that the timing information of the signal and distribution are different.

October 5, 2021

Arka Santra

time [ns]

Combined, bkg timing shifted by -30ns

Input to Allpix² framework:

 \star Used only second chip on the first layer, first stave in the tracker (for now): Stave01 \star Allpix² needs the energy deposition and the position of the hits for the simulation.

Result after digitization by Allpix²

 \bigstar After digitization, Allpix² gives us the clusters, cluster charge, cluster position, pixel charge etc. \star The clustering algorithm used in Allpix² is very basic: \bigstar Add all the adjacent pixels which got fired. \bigstar This may be a good starting point for us. \bigstar Complicated scenario like pixel sharing among two clusters may be worked on later.

 \star If we cut on cluster charge ≤ 1.5 ke ★Signal efficiency 93% ★Background rejection 62% \star If we cut on cluster size ≤ 3 pixels ★Signal efficiency 98% ★Background rejection 32% \star Need to match the clusters with the tracks to understand which tracks are coming from the particle, which are coming from secondary interactions of the signal.

Summary and To Do:

- Digitization of LUXE simulation on tracker are done by Allpix² framework.
 - We can exploit the cluster size and cluster charge distribution to cut on background before we even go for Kalman Filter algorithm.
 - The exact cuts need to be decided after seeing the simulation from the new samples.
- Clustering
 - Using basic clustering now, any adjacent pixels which are fired are added to the cluster.
- Challenges:
 - The digitization is slow.
 - Only one stave with couple of BXs took ~10 minutes.
 - Divide and conquer
 - Thinking of dividing the tracker into each chip and each BX.
 - submit jobs to the batch.

Back up

Check the response of ALPIDE in Allpix²

- with data.
 - We want to reproduce some of the results from the paper in order to see the response of our ALPIDE chips.
 - After reproducing the result from arXiv 2002:12602, we will produce same kind of plots from the Geant4 simulated deposited energy on the tracker.
- Why are we interested in this?
 - The paper uses an electric field based on precise TCAD simulation.
 - This field depends on many properties of the ALPIDE (e.g. doping profiles etc) which are proprietary of TowerJazz.
 - We do not yet have the E-field mesh from the TCAD simulation: hoping to get it at some point
 - In principle, if we had the doping profiles from TowerJazz, we could produce the TCAD simulation ourselves but this is even more difficult than getting the E-field itself.
 - Custom electric field in Allpix² bypasses the problem of not having precise TCAD field.
 - Started with simple linear electric field up to a certain depletion depth.
 - Move to a tailored custom-field similar to what is in the paper.

• A paper (2002:12602) written by the Allpix² developers working on CMOS monolithic pixel chip - compared the simulation

Custom electric field

- Allpix² version 2 included the possibility of introducing a custom electric field.
- Here custom electric field can be defined using ROOT::TF3 objects: provide three functions for

 $\overline{E_x}(x, y, z), \overline{E_y}(x, y, z)$ and $\overline{E_z}(x, y, z)$.

- Built custom electric field to look as much as the field produced by the mesh.
- Took a lot of effort because the plot from <u>2002:12602</u> shows the 3D magnitude of the electric field without the axes scales.
 - Needed to find three custom electric field functions such that their quadrature looks like that in the paper.
- Had to do a lot of trial and error method in the dark to match the electric field both visually and in terms of replication of the cluster charge, cluster size, efficiency etc results.

October 5, 2021

Settings comparison for custom electric field

- The <u>2002:12602</u> Allpix² paper used:
 - CMOS monolithic chip with thickness 100 um (25 um epitaxial layer thickness, 75 um silicon substrate)
 - Pion beam with 120 GeV energy
 - Used more rigorous Generic propagation for charge transfer
 - Used TCAD electric field model, they have more accurate charge transport
 - Digitizer charge collection threshold 120e unless otherwise stated.
 - Results shown are from a "demonstrator" ALPIDE sensor.
 - The differences to the nominal ALPIDE are not expected to be very different.

• I used:

- ALPIDE chip with thickness 100 um (epitaxial layer thickness)
- Pion beam with 120 GeV energy
- We did not have TCAD model, we only used a custom electric field going into 25 um.
 - No electric field from 25 um to 100 um depth.
- Used generic propagation.
- Digitizer charge collection threshold 120e unless otherwise stated.

Arka Santra

Charge propagation in custom electric field:

October 5, 2021

Arka Santra

Comparison between 2002:12602 and custom electric field: I

October 5, 2021

Arka Santra

ion	-			
2602	_			
	_			
	-			
	_			
V				
-	-			
	-			
	_			
	_			
	_			
	_			
	I			
10				
n y (pixel)				

Comparison between 2002:12602 and custom electric field: I

October 5, 2021

 \star Cluster size mean for different charge collection threshold match perfectly. Our efficiency is little higher than the paper for high charge collection threshold. \star Still optimizing the field.

Arka Santra

What we want to achieve

- Digitize the hits of signal and background
- Look at the hits, cluster sizes, cluster charge etc in signal and background samples
 - Want to check the sensor's response when signal and background hit the sensor together.
- Need to get the realistic electric field inside the ALPIDE chips for good simulation.

October 5, 2021

This background comes from signal hitting tracker material.

From Meir Weissman Jonathan Kogman, and Shimon Nowik, linear electric field.

Arka Santra

Sample config file

[Allpix] number_of_events = 1000 model_paths = "/Users/arkasantra/AllPix2/allpix-squared/examples/ arkaExamples" log_level = "WARNING" detectors_file = "tutorial-geometry.conf" multithreading = true workers = 15root_file = "modules_customElectricField.root"

[GeometryBuilderGeant4]

[DepositionGeant4] physics_list = "FTFP_BERT_EMY" enable_pai = true particle_type = "Pi+" source_type = "beam" source_energy = 120GeV source_position = 0um 0um -200um $beam_size = 0.5mm$ $beam_direction = 0.0.1$ number_of_particles = 1 max_step_length = 1.0um

custom electric field prepared by Noam ####

[ElectricFieldReader] model = "custom" log_level = "WARNING"

field_function = $"[0]^*(x^*x+z^*z)"$ field_parameters = 125000V/mm depletion_depth = 25um

Arka Santra

 $output_plots = 1$ output_plots_project = y output_plots_single_pixel = true

[GenericPropagation] temperature = 293K $charge_per_step = 5$ timestep_min = 0.5ps timestep_max = 0.5ns integration_time = 20ns

[SimpleTransfer] $output_plots = 1$

[DefaultDigitizer] log_level = "WARNING" electronics_noise = 10e threshold = 120e threshold_smearing = 5e $output_plots = 1$

[DetectorHistogrammer] log_level = "WARNING" $output_plots = 1$

[ROOTObjectWriter]

The Tracker Sub-detector

Using the ALPIDE pixel sensors Built for the ALICE ITS phase-1 upgrade - already installed Manufactured by TowerJazz in Israel Many proprietary restrictions.

\bigstarALPIDE silicon pixel chip size: 15 x 30 mm². ✦Each chip has 1024×512 pixels.

 μm . ✦Good performance under irradiation

 \bigstar The timing resolution of ALPIDE isn't great **★**Not a problem for LUXE as the repetition rate of the laser is <10Hz ★Electron bunches will arrive at LUXE in 10 Hz at most.

Use of Custom Electric Field to Particle Gun related to LUXE Tracker

Particle Gun Settings

- ALPIDE epitaxial layer thickness 25 um
- Positron particle
 - Energy 5 GeV
 - source_position = 0um 0um -200um
 - beam_size = 0.5mm
- **Electron particle**
 - Energy 100 KeV, 1 MeV and 100 MeV
 - source_position = 0um 0um -200um
 - beam_size = 0.5mm
- Photon particle
 - Energy 100 KeV
 - source_position = 0um 0um -200um
 - beam_size = 0.5mm
 - But it was found that they do not make hits on the ALPIDE.
- Custom electric field

October 5, 2021

Results from Allpix² for particle guns

 \bigstar Cluster charge MPV for 5 GeV positron: 0.89 ± 0.04 ke \bigstar Cluster charge MPV for 1 MeV electron: 0.53±0.24 ke \bigstar Cluster charge MPV for 100 MeV electron: 0.56±0.24 ke \bigstar Fit with Landau function

Low energy electrons can be removed if we cut on cluster size > 4

Arka Santra

Electron $\frac{dE}{dx}$ distribution $\frac{dE}{dx}$

dE/dx vs. E of electrons in silicon

