Background particles in the Tracker Subsystem

Arka Santra, October 5, 2021 Weizmann Institute of Science, Rehovot, Israel

The subsystems near the IP

Plots from Sasha

Outer stave, layer 4 (Stave 7)

Main details:

• e+laser background only setup • Only beam, no laser. • Looked at the background particles: Mainly electrons, photons necessarily making a hit in the tracker).

- Plots from the tracks intersecting the tracker plane (not
- 2.13 BX of background samples, plots normalized to 1 BX.

- These plots are being shown for the first time.
 - Effective 3D plot.
- Zoom out Z axis.

- Z axis zoomed in.
- We have high number of electrons having energies more than 10 KeV.
 - Can be ~100 MeV.
 - Many are not from staves

- These plots are being shown for the first time.
 - Effective 3D plot.
- We have high number of electrons having energies more than 10 KeV.
 - Can be ~100 MeV.
 - Many are not from staves

Electrons in Outer Stave, last layer of tracker

- This is now the stave 7.
- Electrons are coming from stave 7 and calorimeter mostly.
- Energy can be as high as 10 MeV.

- We have high number of photons coming from dump.
 - Also from beam exit.
 - Calorimeter.
- E ~ 100 KeV to 10 MeV

Photons in Outer Stave, last layer of tracker

- This is now the stave 7.
- Most photons are coming from the calorimeter and shield.
- Some photons from the staves, not much.

- Few positrons.
 - Most are from the stave itself.
 - A few from the calorimeter and the wall between beam and tracker.

Positrons in Outer Stave, last layer of tracker

- Few positrons.
 - Most are from the stave itself.
 - A few from the calorimeter.

Summary table of the number of background particles

Only electron beam, e+laser	Electrons/BX [CDR]	Electrons/BX [Now]	Relative difference: (Now CDR)/CDR
Inner stave, first layer	7540.8	3599.1	-52%
Outer stave, last layer	2536.8	3255.4	28%

Only electron beam, e+laser	Photons/BX [CDR]	Photons/BX [Now]	Relative difference: (Now CDR)/CDR
Inner stave, first layer	476062.4	132196.2	-72%
Outer stave, last layer	60675.8	147858.7	144%

Only electron beam, e+laser	Positrons/BX [CDR]	Positrons/BX [Now]	Relative difference: (Now CDR)/CDR
Inner stave, first layer	13	341.3	2500%
Outer stave, last layer	8	360.6	4400%

Now positrons are 1 order of magnitude higher, still much less than the electrons

Neutrons in Outer Stave, last layer of tracker

• Zoom out Z axis.

Electrons in Inner Stave, first layer of tracker: Electron side

- Zoom in Z axis.
- Too much electrons:
 - Did the electron side get properly lowered?

Summary

- A brief study of the origin of the background particles.
 - Studied e+laser, only the electron beam.
- Background electrons:
 - Mostly coming from the beam exit, beam in the air and the plate between the tracker and beam pipe
 - Also calorimeter
- Background photons:
 - Coming from the vacuum wall, exit window, dump and shielding
 - They will create much less hits on the tracker though.
- Background positrons:
 - Coming from the tracker staves and calorimeter.
- Checked other particles
 - Protons:
 - 7 particles/BX in the Stave 0
 - 3.8 particles/BX in the Stave 7
 - Muons:
 - 0.9 particles/BX in the Stave 0
 - 0 particles/BX in the Stave7
 - Pions:
 - 0.5 particles/BX in the Stave 0
 - 0 particles/BX in the Stave 7
- Analysis of deposit of energy ("hits") in the tracker plane:
 - Work in progress.

Bonus slides

The subsystems near the beam dump

Plots from Sasha

The entire subsystem

Plots from Sasha

The subsystems from the IP to beam dump

Plots from Sasha

CDR plots

• e+laser hics setup

- Only electron beam, no laser.
- Easy to understand only beam related background.
- Samples produced by Sasha.
- Looked at the background particles: • electrons
- making a hit in the tracker).

Plots from the tracks intersecting the tracker plane (not necessarily

- These plots are being shown for the first time.
- We have high number of electrons having energies more than 10 KeV.
 - Many are not from staves.
- What happens if we can remove unwanted electrons mechanically?

Electrons in Outer Stave, last layer of tracker

- This is now the stave 7.
- Most electrons have energies > 20 KeV.
- Some electrons from the staves, not much.

Many more sources of photons, as expected.

- Dominant source is where beam crosses the beam pipe. The rate is high but low energy.
- Some of them are from the end window of the vacuum chamber.
- Shielding and dump also contributes.
- Energy is very small for most of the background photons, <2 MeV.

Photons in Outer Stave, last layer of tracker

 Photons from other layers of tracker.

- E > 30 MeV but the rate
 is low.
- Some of them are from the end window of the vacuum chamber.
- Energy is very small for most of the background photons, <5 MeV.