

Introduction

W and Z production

Higgs boson production

Conclusions

W^{\pm}, Z^{0} and Higgs Boson Production at Hadron Colliders at NNLO

Johannes Blümlein, DESY

Dec 13, 2011

[S. Alekhin, J.B., P. Jimenez-Delgado, S. Moch, E. Reya, 1011.6259]

Contents

Introduction 1

2 W and Z production

Biggs boson production

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Johannes Blümlein, DESY

Introduction

W and Z production

Higgs boson production

Conclusions

• NNLO predictions are of importance for a series of key cross sections at hadron colliders.

▲ロト ▲冊 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

Johannes Blümlein, DESY

Introduction

W and Z production

Higgs boson production

Conclusions

- NNLO predictions are of importance for a series of key cross sections at hadron colliders.
- This applies to the W, Z, and Higgs boson cross sections in particular.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Johannes Blümlein, DESY

Introduction

W and Z production

Higgs boson production

Conclusions

- NNLO predictions are of importance for a series of key cross sections at hadron colliders.
- This applies to the W, Z, and Higgs boson cross sections in particular.
- We present detailed NNLO predictions based on all current distributions: ABKM09, ABM10, HERAPDF, JR, MSTW08.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Johannes Blümlein, DESY

Introduction

W and Z production

Higgs boson production

Conclusions

- NNLO predictions are of importance for a series of key cross sections at hadron colliders.
- This applies to the W, Z, and Higgs boson cross sections in particular.
- We present detailed NNLO predictions based on all current distributions: ABKM09, ABM10, HERAPDF, JR, MSTW08.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• We compare to all experimental data having ever been measured.

Johannes Blümlein, DESY

Introduction

W and Z production

Higgs boson production

Conclusions

- NNLO predictions are of importance for a series of key cross sections at hadron colliders.
- This applies to the W, Z, and Higgs boson cross sections in particular.
- We present detailed NNLO predictions based on all current distributions: ABKM09, ABM10, HERAPDF, JR, MSTW08.
- We compare to all experimental data having ever been measured.
- The study derives realistic theory errors for the use in the present and upcoming measurements at the Tevatron and the LHC.

W^{\pm} and $Z^0 p\overline{p}$ -cross sections

Johannes Blümlein, DESY

Introduction

W and Z production

Higgs boson production

Conclusions

\sqrt{s} (TeV)		0.546	0.630	1.8	1.96
ABM10	W^{\pm}	5.632 ± 0.092	7.045 ± 0.111	24.441 ± 0.235	26.740 ± 0.259
$\alpha_s=0.1147\pm 0.0012$	Z^0	1.761 ± 0.022	2.187 ± 0.028	7.181 ± 0.068	7.846 ± 0.075
ABKM09	W^{\pm}	5.804 ± 0.075	7.222 ± 0.091	23.88 ± 0.243	26.09 ± 0.265
$\alpha_s=0.1135\pm 0.0014$	Z^0	1.806 ± 0.020	2.234 ± 0.024	7.056 ± 0.068	7.691 ± 0.075
JR	W^{\pm}	5.983 ± 0.148	7.346 ± 0.159	23.069 ± 0.238	25.157 ± 0.251
$\alpha_s=0.1124\pm 0.0020$		(5.358 ± 0.152)	(6.637 ± 0.167)	(22.121 ± 0.274)	(24.181 ± 0.296)
	Z^0	1.837 ± 0.029	2.268 ± 0.034	6.975 ± 0.071	7.586 ± 0.076
		(1.648 ± 0.028)	(2.047 ± 0.033)	(6.667 ± 0.080)	(7.272 ± 0.087)
MSTW08	W^{\pm}	5.469 ± 0.151	6.802 ± 0.176	23.14 ± 0.394	25.35 ± 0.422
$\alpha_s=0.1171\pm 0.014$	Z^0	1.654 ± 0.047	2.056 ± 0.056	6.773 ± 0.126	7.406 ± 0.134
HERAPDF	W^{\pm}	6.121	7.519	24.51	26.80
$\alpha_s = 0.1145$	Z^0	1.853	2.296	7.319	7.978

Table 1: NNLO predictions for the production cross sections $a(p\overline{p} \rightarrow V + X) [nb]$, with $V = W^{\pm}, Z^{0}$. The abbreviation W^{\pm} refers to the sum $W^{+} + W^{-}$. Notice that for $p\overline{p}$ collisions the W^{+} and W^{-} cross sections are equal. The errors refer to the $\pm l\sigma$ pdf uncertainties. The NNLO values of α_{s} refer to $\alpha_{s} = \alpha_{s}(M_{Z}^{2})$. To allow for a comparison with the corrections up to NLO the corresponding cross sections for the JR distributions are also listed as an example in parentheses.

DESY

Johannes Blümlein, DESY

Introduction

W and Z production

Higgs boson production

Conclusions

\sqrt{s} (TeV)		0.5	7	10	14
ABM10	W^+	1.236 ± 0.057	59.86 ± 0.838	85.58 ± 1.267	118.4 ± 1.891
	W^-	0.363 ± 0.092	40.28 ± 0.535	60.28 ± 0.852	86.58 ± 1.331
	W^{\pm}	1.600 ± 0.070	100.1 ± 1.315	145.9 ± 2.065	205.0 ± 3.186
	Z^0	0.305 ± 0.015	29.01 ± 0.391	42.77 ± 0.633	60.69 ± 0.963
ABKM09	W^+	1.160 ± 0.046	58.86 ± 0.903	85.14 ± 1.427	119.4 ± 2.072
	W^-	0.348 ± 0.014	39.43 ± 0.614	59.56 ± 0.993	86.53 ± 1.525
	W^{\pm}	1.509 ± 0.058	98.27 ± 1.527	144.7 ± 2.436	205.9 ± 3.658
	Z^0	0.287 ± 0.012	28.42 ± 0.457	42.28 ± 0.743	60.70 ± 0.115
JR	W^+	1.138 ± 0.061	54.57 ± 1.10	78.43 ± 1.98	109.31 ± 3.13
		(1.245 ± 0.065)	(52.96 ± 0.99)	(76.60 ± 1.74)	(107.58 ± 2.95)
	W^{-}	0.387 ± 0.028	37.15 ± 0.79	55.54 ± 1.44	80.02 ± 2.31
		(0.427 ± 0.030)	(36.39 ± 0.72)	(54.67 ± 1.26)	(79.16 ± 2.12)
	W^{\pm}	1.525 ± 0.052	91.72 ± 1.82	133.99 ± 3.35	189.29 ± 5.41
		(1.672 ± 0.053)	(89.36 ± 1.57)	(131.23 ± 2.87)	(186.74 ± 4.95)
	Z^0	0.300 ± 0.011	27.24 ± 0.50	40.39 ± 0.95	57.85 ± 1.56
		(0.336 ± 0.012)	(26.57 ± 0.43)	(39.57 ± 0.81)	(57.00 ± 1.42)
MSTW08	W^+	1.221 ± 0.0421	56.80 ± 0.971	81.83 ± 1.405	114.0 ± 1.945
	W^-	0.416 ± 0.017	39.63 ± 0.678	59.45 ± 1.008	85.63 ± 1.484
	W^{\pm}	1.637 ± 0.052	96.41 ± 1.607	141.3 ± 2.372	199.6 ± 3.379
	Z^0	0.319 ± 0.011	27.89 ± 0.481	41.34 ± 0.705	58.99 ± 1.012
HERAPDF	W^+	1.219	59.37	85.37	119.0
	W^{-}	0.414	40.82	61.06	87.94
	W^{\pm}	1.633	100.2	146.4	206.9
1	Z^0	0.322	29.08	42.95	61.22

 W^{\pm} and Z^0 *pp*-cross sections

Table 2: NNLO predictions for the production cross sections $\sigma(pp \rightarrow V + X) [nb]$, with $V = W^{\pm}, Z^{0}$. The abbreviation W^{\pm} denotes the sum $W^{+} + W^{-}$. The errors refer to the $\pm 1\sigma$ pdf uncertainties. To allow for a comparison with the corrections up to NLO we also listed the corresponding cross sections for the JR distributions as an example in parentheses .

Introduction

W and Z production

Higgs boson production

Conclusions

 W^{\pm} and Z^0 production cross sections

Figure 1: Comparison of different NNLO predictions for the inclusive W^+ , W^- , W^+ , and Z^0 boson production cross sections in $p\bar{p}$ annihilation and pp scattering ($\sqrt{S} = 0.5$ TeV) based on the pdfs of recent NNLO analyses, ABM,ABKM,JR,HERAPDF,MSTW08,MSTW10, and the corresponding experimental data by UA1,UA2,PHENIX,CDF,CDF1,D0,ATLAS,CMS. Left panel (a): the lower energy region corresponds to $\bar{p}\bar{p}$ collisions, except at 0.5 TeV, which refers to pp scattering. For the latter case the predictions refer to (from above) $W^+ + W^-$, W^- and the ones for Z^0 are given to the right of the ones for W^- . Right panel (b): LHC energies (pp collisions); the inner error bars refer to ($\sigma_{\rm stat}^2 + \sigma_{\rm syst}^2$)^{1/2} and the total error is obtained by adding the luminosity error in quadrature.

Introduction

W and Z production

Higgs boson production

Conclusions

	1				
M_H (GeV)	ABM10	ABKM09	JR	MSTW08	HERAPDF
100	1.438 ± 0.066	1.380 ± 0.076	1.593 ± 0.091	1.682 ± 0.046	1.417
110	1.051 ± 0.052	1.022 ± 0.061	1.209 ± 0.078	1.265 ± 0.038	1.055
115	0.904 ± 0.047	0.885 ± 0.055	1.060 ± 0.072	1.104 ± 0.034	0.917
120	0.781 ± 0.042	0.770 ± 0.050	0.933 ± 0.067	0.968 ± 0.031	0.800
125	0.677 ± 0.038	0.672 ± 0.045	0.823 ± 0.062	0.851 ± 0.029	0.700
130	0.588 ± 0.034	0.589 ± 0.041	0.729 ± 0.058	0.752 ± 0.026	0.615
135	0.513 ± 0.031	0.518 ± 0.037	0.647 ± 0.054	0.666 ± 0.024	0.541
140	0.449 ± 0.028	0.456 ± 0.034	0.576 ± 0.050	0.591 ± 0.022	0.479
145	0.394 ± 0.025	0.403 ± 0.031	0.514 ± 0.047	0.527 ± 0.020	0.424
150	0.347 ± 0.023	0.358 ± 0.028	0.461 ± 0.044	0.471 ± 0.018	0.377
155	0.306 ± 0.020	0.318 ± 0.026	0.413 ± 0.041	0.421 ± 0.017	0.336
160	0.271 ± 0.019	0.283 ± 0.024	0.371 ± 0.039	0.378 ± 0.016	0.300
165	0.240 ± 0.017	0.253 ± 0.022	0.335 ± 0.036	0.341 ± 0.014	0.269
170	0.213 ± 0.015	0.226 ± 0.020	0.302 ± 0.034	0.307 ± 0.013	0.241
175	0.190 ± 0.014	0.203 ± 0.019	0.274 ± 0.032	0.278 ± 0.012	0.217
180	0.169 ± 0.013	0.182 ± 0.017	0.248 ± 0.030	0.251 ± 0.012	0.195
185	0.151 ± 0.012	0.164 ± 0.016	0.225 ± 0.028	0.228 ± 0.011	0.176
190	0.136 ± 0.011	0.148 ± 0.015	0.205 ± 0.027	0.207 ± 0.010	0.159
200	0.109 ± 0.009	0.121 ± 0.013	0.170 ± 0.024	0.172 ± 0.009	0.131

Table 3: NNLO predictions for the production cross sections $\sigma(p\overline{p} \rightarrow H^0 + X)$ [pb] at $\sqrt{S} = 1.96$ TeV. The errors refer to the $\pm 1\sigma$ pdf uncertainties.

$H^0 p\overline{p}$ -production cross section at Tevatron

▲□▶ ▲□▶ ★ □▶ ★ □▶ = □ ● ● ●

Introduction

W and Z production

Higgs boson production

Conclusions

M_H (GeV)	ABM10	ABKM09	JR	MSTW08	HERAPDF
100	22.82 ± 0.53	21.18 ± 0.60	20.48 ± 0.70	22.95 ± 0.31	20.90
110	18.65 ± 0.44	17.30 ± 0.49	16.92 ± 0.56	18.84 ± 0.26	17.12
115	16.95 ± 0.40	15.72 ± 0.45	15.46 ± 0.50	17.16 ± 0.23	15.58
120	15.45 ± 0.37	14.34 ± 0.41	14.17 ± 0.45	15.69 ± 0.22	14.22
125	14.14 ± 0.35	13.12 ± 0.38	13.03 ± 0.41	14.39 ± 0.20	13.03
130	12.96 ± 0.32	12.03 ± 0.35	12.01 ± 0.37	13.23 ± 0.19	11.97
135	11.92 ± 0.29	11.07 ± 0.33	11.10 ± 0.34	12.20 ± 0.17	11.02
140	10.99 ± 0.27	10.21 ± 0.31	10.29 ± 0.32	11.28 ± 0.16	10.18
145	10.15 ± 0.26	9.44 ± 0.29	9.55 ± 0.29	10.45 ± 0.15	9.42
150	9.40 ± 0.24	8.75 ± 0.27	8.89 ± 0.27	9.71 ± 0.14	8.74
155	8.73 ± 0.23	8.13 ± 0.25	8.30 ± 0.25	9.04 ± 0.14	8.13
160	8.12 ± 0.21	7.56 ± 0.24	7.75 ± 0.24	8.43 ± 0.13	7.57
165	7.56 ± 0.20	7.05 ± 0.23	7.26 ± 0.23	7.88 ± 0.12	7.07
170	7.06 ± 0.19	6.59 ± 0.21	6.82 ± 0.21	7.38 ± 0.12	6.62
175	6.60 ± 0.18	6.17 ± 0.20	6.41 ± 0.20	6.92 ± 0.11	6.20
180	6.19 ± 0.17	5.79 ± 0.19	6.04 ± 0.19	6.51 ± 0.11	5.83
185	5.80 ± 0.16	5.43 ± 0.18	5.70 ± 0.18	6.13 ± 0.10	5.48
190	5.46 ± 0.15	5.11 ± 0.17	5.39 ± 0.18	5.78 ± 0.10	5.16
200	4.84 ± 0.14	4.55 ± 0.16	4.83 ± 0.16	5.16 ± 0.09	4.60
220	3.88 ± 0.12	3.67 ± 0.14	3.96 ± 0.14	4.20 ± 0.08	3.73
240	3.18 ± 0.10	3.02 ± 0.12	3.32 ± 0.13	3.49 ± 0.07	3.09
260	2.66 ± 0.09	2.55 ± 0.10	2.84 ± 0.12	2.96 ± 0.06	2.61
280	2.28 ± 0.08	2.19 ± 0.09	2.48 ± 0.11	2.58 ± 0.06	2.26
300	2.00 ± 0.08	1.94 ± 0.09	2.23 ± 0.11	2.29 ± 0.06	2.00

H⁰ pp-production at LHC $\sqrt{S} = 7$ TeV

Table 4: NNLO predictions for the production cross sections $\sigma(pp \rightarrow H^0 + X)$ [pb] at LHC for $\sqrt{S} = 7$ TeV. The errors refer to the $\pm 1\sigma$ pdf uncertainties.

Introduction

W and Z production

Higgs boson production

Conclusions

M_H (GeV)	ABM10	ABKM09	JR	MSTW08	HERAPDF
100	28.81 ± 0.65	26.81 ± 0.74	25.66 ± 0.91	28.85 ± 0.38	26.38
110	23.71 ± 0.54	22.04 ± 0.61	21.31 ± 0.72	23.83 ± 0.32	21.74
115	21.62 ± 0.49	20.09 ± 0.56	19.53 ± 0.65	21.77 ± 0.29	19.85
120	19.78 ± 0.46	18.38 ± 0.51	17.95 ± 0.59	19.96 ± 0.27	18.18
125	18.15 ± 0.42	16.86 ± 0.48	16.55 ± 0.53	18.35 ± 0.25	16.70
130	16.70 ± 0.39	15.52 ± 0.44	15.29 ± 0.49	16.93 ± 0.23	15.39
135	15.41 ± 0.36	14.32 ± 0.40	14.17 ± 0.44	15.65 ± 0.21	14.21
140	14.25 ± 0.34	13.24 ± 0.38	13.16 ± 0.41	14.51 ± 0.20	13.16
145	13.21 ± 0.32	12.28 ± 0.36	12.26 ± 0.37	13.48 ± 0.19	12.22
150	12.27 ± 0.30	11.41 ± 0.33	11.44 ± 0.35	12.55 ± 0.18	11.37
155	11.42 ± 0.28	10.63 ± 0.31	10.69 ± 0.32	11.71 ± 0.17	10.60
160	10.66 ± 0.26	9.92 ± 0.29	10.02 ± 0.30	10.96 ± 0.16	9.90
165	9.96 ± 0.25	9.28 ± 0.27	9.41 ± 0.28	10.27 ± 0.15	9.27
170	9.33 ± 0.23	8.69 ± 0.26	8.85 ± 0.27	9.64 ± 0.14	8.69
175	8.75 ± 0.22	8.15 ± 0.25	8.34 ± 0.25	9.06 ± 0.14	8.17
180	8.22 ± 0.21	7.67 ± 0.24	7.88 ± 0.24	8.54 ± 0.13	7.69
185	7.73 ± 0.20	7.22 ± 0.23	7.45 ± 0.23	8.06 ± 0.12	7.25
190	7.29 ± 0.19	6.81 ± 0.21	7.06 ± 0.22	7.62 ± 0.12	6.85
200	6.51 ± 0.18	6.09 ± 0.20	6.36 ± 0.20	6.84 ± 0.11	6.14
220	5.28 ± 0.15	4.96 ± 0.17	5.26 ± 0.17	5.61 ± 0.10	5.02
240	4.37 ± 0.13	4.13 ± 0.15	4.44 ± 0.15	4.70 ± 0.09	4.19
260	3.70 ± 0.12	3.51 ± 0.13	3.83 ± 0.14	4.03 ± 0.08	3.58
280	3.20 ± 0.10	3.05 ± 0.12	3.38 ± 0.14	3.53 ± 0.07	3.13
300	2.83 ± 0.10	2.72 ± 0.11	3.05 ± 0.13	3.17 ± 0.07	2.79

H⁰ pp-production at LHC $\sqrt{S} = 8$ TeV

Table 5: NNLO predictions for the production cross sections $\sigma(pp \rightarrow H^0 + X)$ [pb] at LHC for $\sqrt{S} = 8$ TeV. The errors refer to the $\pm 1\sigma$ pdf uncertainties.

Introduction

W and Z production

Higgs boson production

Conclusions

M_H (GeV)	ABM10	ABKM09	JR	MSTW08	HERAPDF
100	71.16 ± 1.53	67.27 ± 1.78	62.24 ± 2.62	70.73 ± 0.98	65.54
110	60.05 ± 1.27	56.60 ± 1.48	52.77 ± 2.11	59.73 ± 0.81	55.28
115	55.42 ± 1.17	52.17 ± 1.36	48.82 ± 1.92	55.16 ± 0.73	51.01
120	51.32 ± 1.10	48.25 ± 1.24	45.32 ± 1.74	51.10 ± 0.69	47.23
125	47.63 ± 1.00	44.73 ± 1.16	42.16 ± 1.59	47.46 ± 0.62	43.83
130	44.33 ± 0.94	41.59 ± 1.08	39.32 ± 1.45	44.19 ± 0.57	40.80
135	41.36 ± 0.87	38.77 ± 1.00	36.77 ± 1.33	41.26 ± 0.53	38.07
140	38.67 ± 0.81	36.22 ± 0.93	34.45 ± 1.23	38.60 ± 0.49	35.60
145	36.23 ± 0.77	33.92 ± 0.87	32.36 ± 1.13	36.21 ± 0.46	33.37
150	34.02 ± 0.71	31.83 ± 0.81	30.46 ± 1.04	34.03 ± 0.43	31.34
155	32.00 ± 0.67	29.93 ± 0.77	28.72 ± 0.97	32.04 ± 0.40	29.49
160	30.16 ± 0.64	28.20 ± 0.72	27.14 ± 0.90	30.22 ± 0.38	27.81
165	28.48 ± 0.62	26.62 ± 0.68	25.70 ± 0.83	28.58 ± 0.36	26.28
170	26.93 ± 0.57	25.16 ± 0.65	24.37 ± 0.78	27.05 ± 0.34	24.87
175	25.52 ± 0.54	23.83 ± 0.61	23.15 ± 0.73	25.65 ± 0.32	23.58
180	24.21 ± 0.52	22.61 ± 0.58	22.03 ± 0.69	24.37 ± 0.31	22.39
185	23.00 ± 0.49	21.48 ± 0.56	20.99 ± 0.64	23.18 ± 0.29	21.30
190	21.90 ± 0.47	20.44 ± 0.53	20.04 ± 0.61	22.09 ± 0.28	20.29
200	19.91 ± 0.43	18.59 ± 0.49	18.33 ± 0.55	20.14 ± 0.26	18.49
220	16.75 ± 0.37	15.64 ± 0.41	15.59 ± 0.45	17.03 ± 0.22	15.62
240	14.38 ± 0.33	13.44 ± 0.36	13.54 ± 0.38	14.70 ± 0.19	13.46
260	12.60 ± 0.29	11.79 ± 0.33	12.01 ± 0.34	12.96 ± 0.18	11.85
280	11.27 ± 0.27	10.56 ± 0.30	10.86 ± 0.30	11.66 ± 0.17	10.64
300	10.32 ± 0.25	9.69 ± 0.28	10.07 ± 0.29	10.75 ± 0.16	9.80

H⁰ pp-production at LHC $\sqrt{S} = 14$ TeV

Table 6: NNLO predictions for the production cross sections $\sigma(pp \rightarrow H^0 + X)$ [pb] at LHC for $\sqrt{S} =$ 14 TeV. The errors refer to the $\pm 1\sigma$ pdf uncertainties.

Introduction

W and Z production

Higgs boson production

Conclusions

Comparison of the current NNLO gluon densities

Figure 2: Comparison of the NNLO gluon distributions at $Q^2 = 4$ GeV² and $Q^2 = (160 \text{ GeV})^2$ for the ratio $xg(x, Q^2)/xg(x, Q^2)_{ABKA}$ for ABKM09 (full line), (dashed line), MSTW08 (dotted line), and HERAPDF(dash-dotted line, without error band).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ●

Introduction

W and Z production

Higgs boson production

Conclusions

Figure 3: Predictions of the inclusive Higgs–boson production cross sections at NNLO for different energies at the LHC for the parton distributions ABM10, JR, HERAPDF, MSTW08. For the ABM10 and JR distributions the scale variation errors corresponding to the range $M_H/2 \le \mu_F = \mu_R \le 2M_H$ are included. The inner error bars refer to the pdf–errors only.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ●

Conclusions

Johannes Blümlein, DESY

Introduction

W and Z production

Higgs boson production

Conclusions

• The combined HERA data are essential for the prediction of the Standard Candels and Higgs boson production at Tavatron and LHC at NNLO.

Conclusions

Johannes Blümlein, DESY

Introduction

W and Z production

Higgs boson production

Conclusions

- The combined HERA data are essential for the prediction of the Standard Candels and Higgs boson production at Tavatron and LHC at NNLO.
- W[±] and Z⁰ boson production at LHC is currently predicted with an accuracy of 10%, mainly due to the present differences in the sea quark densities .

Johannes

Conclusions

- Blümlein DESY
- Introduction
- W and Z production
- Higgs boson production
- Conclusions

- The combined HERA data are essential for the prediction of the Standard Candels and Higgs boson production at Tavatron and LHC at NNLO.
- W^{\pm} and Z^0 boson production at LHC is currently predicted with an accuracy of 10%, mainly due to the present differences in the sea quark densities .
- The Higgs boson production cross section at Tevatron has a current error of $\sim 40\%.$

Conclusions

- Introduction
- W and Z production
- Higgs boson production
- Conclusions

- The combined HERA data are essential for the prediction of the Standard Candels and Higgs boson production at Tavatron and LHC at NNLO.
- W^{\pm} and Z^0 boson production at LHC is currently predicted with an accuracy of 10%, mainly due to the present differences in the sea quark densities .
- The Higgs boson production cross section at Tevatron has a current error of $\sim 40\%.$

• Here the reference to MSTW08 only may lead to wrong exculsion bounds.

Johannes Blümlein,

- Introduction
- W and Z production
- Higgs boson production
- Conclusions

Conclusions

- The combined HERA data are essential for the prediction of the Standard Candels and Higgs boson production at Tavatron and LHC at NNLO.
- W^{\pm} and Z^0 boson production at LHC is currently predicted with an accuracy of 10%, mainly due to the present differences in the sea quark densities .
- $\bullet\,$ The Higgs boson production cross section at Tevatron has a current error of $\sim 40\%.$
- Here the reference to MSTW08 only may lead to wrong exculsion bounds.

 $\bullet\,$ At LHC an accuracy of 10-17 % is obtained.

Introduction

W and Z production

Higgs bosor production

Conclusions

Conclusions

• An essential limiting factor for the accuracy of the Higgs boson production cross section is the present knowledge of $\alpha_s(M_Z^2)$.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Introduction

W and Z production

Higgs boson production

Conclusions

Conclusions

- An essential limiting factor for the accuracy of the Higgs boson production cross section is the present knowledge of $\alpha_s(M_Z^2)$.
- The theoretical error on the W,Z and Higgs boson production cross sections at NNLO are given by the cover of the ABM10, HERAPDF, JR, and MSTW08 predictions.