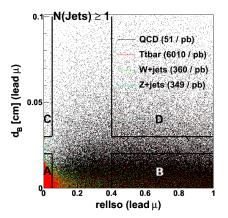
Data Driven Background Estimation in tt Analyses at CMS

Holger Enderle

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

LHC Physics Discussions: Top Physics 15th November 2010


- 2 Matrix Method
- Charge Asymmetry Method

ABCD - Method

Idea of the method:

- Count QCD events in pure QCD control regions
- Translate into number of QCD events in signal region

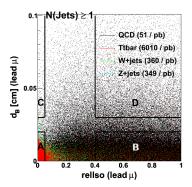
Procedure:

- Find 2 uncorrelated variables providing pure QCD regions
 - example for semileptonic (μ)
 - rellso: relative isolation of muon
 - *d_B*: muon impact parameter
- Define 4 regions in the 2-dim space spanned by these variables
 - signal region A(final selection)
 - 3 QCD regions B,C,D

Formula:

•
$$\frac{N_A}{N_B} = \frac{N_C}{N_D} \Rightarrow N_A = N_B \cdot \frac{N_C}{N_D}$$

ABCD - Uncertainties


Signal contamination in regions B,C,D:

- How large is the effect?
 - $\blacktriangleright\,$ our example: B(\sim 0.2%) and C(\sim 2%)

- results in: ~ 2.2% higher QCD estimate
- Relative uncertainty under control
 - systematic overestimation
 - proportional to relative contamination

Correlated variables:

- More complicated
 - relation not necessarily satisfied
- Correlation can be estimated
 - determine ^{N_C}/_{N_D} in different slices of control region
 - extrapolate to signal region

Matrix Method

Idea of the method:

- Factorize efficiencies of real and fake leptons for some isolation criteria
- Knowing these efficiencies and varying the isolation criteria
 - define a system of 2 equations with 2 unknowns
 - estimate QCD-like background (no real isolated lepton)
- Two leptons in the dileptonic case
 - define a system of 3 equations with 3 unknowns
 - estimate QCD- and W+jets-like background at the same time

System of equations:

- N' relaxed isolation criteria for both leptons
- N^m at least one lepton fulfills tight isolation criteria
- N^t tight isolation criteria for both leptons

$$N' = N'_{\rm S} + N'_{\rm W} + N'_{
m QCD}$$

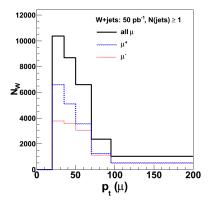
$$N^m = (2\epsilon_{\rm real} - \epsilon_{\rm real}^2)N'_{\rm S} + (\epsilon_{\rm real} + \epsilon_{\rm fake} - \epsilon_{\rm real}\epsilon_{\rm fake})N'_{\rm W} + (2\epsilon_{\rm fake} - \epsilon_{\rm fake}^2)N'_{
m QCD}$$

$$N^t = \epsilon_{\text{real}}^2 N'_{\text{S}} + \epsilon_{\text{real}} \epsilon_{\text{fake}} N'_{\text{W}} + \epsilon_{\text{fake}}^2 N'_{\text{QCD}}$$

Matrix Method - Uncertainties

ABCD method is essentially a simplified version of matrix method

$$\bullet \ \mathsf{N}_{\mathrm{QCD}}^t = \epsilon_{\mathit{fake}} \cdot \mathsf{N}_{\mathrm{QCD}}^t$$


►
$$N_A = N_{\text{QCD}}^t$$
, $N_C/N_D = \epsilon_{\textit{fake}}$, $N_B = N_{\text{QCD}}^{\prime}$

- Advantages of matrix method
 - accounts for signal contamination
 - calculates number of signal and background events at the same time
- Disadvantage of matrix method
 - need to know efficiencies of real and fake leptons
- Main difficulty and largest source of uncertainty
 - evaluation and parametrisation of efficiencies
 - ★ relative uncertainty on electron efficiency $\sigma(\epsilon_{\rm real}) \sim 5\%$
 - relative uncertainty on fake rate $\sigma(\epsilon_{
 m fake}) \sim 10\%$
- Study with 100 pb⁻¹ (dileptonic)
 - ▶ signal-like events: 149 ± 13(stat) ± 1(syst) (9% comb uncert)
 - ▶ W+jets-like events: $5.34 \pm 0.69(\text{stat}) \pm 0.91(\text{syst})$ (21% comb uncert)
 - QCD-like events: negligible

Charge Asymmetry Method

Idea of the method:

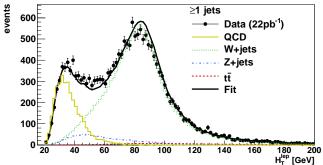
- pp-collider:
 N(W⁺) > N(W⁻)
- W+jets: $N(\mu^+) > N(\mu^-)$
- $t\bar{t}: N(\mu^+) = N(\mu^-)$
- Calculate N_{W+jets} from charge asymmetry of isolated muons

Formula:

• Define asymmetry parameter: $R = \frac{(N^+ + N^-)_{W+jets}}{(N^+ - N^-)_{W+jets}}$ (from MC)

•
$$(N^+ - N^-)_{W+jets} = (N^+ - N^-)_{all \, data}$$

Charge Asymmetry - Uncertainties


- Uncertainty on the charge Asymmetry in the simulation
 - dominated by PDF uncertainties
- Other events leading to charge asymmetry
 - e.g. single top
- Systematic uncertainties are in the order of 10%
- With 50 pb⁻¹ statistical uncertainties dominate
 - combined relative uncertainty: $\sim 40\%$
- With 1 fb⁻¹ systematic uncertainties start to dominate
 - combined relative uncertainty: ~ 15%
- Completely different approach than all other methods
- Valuable cross check

Template Fit

Idea of the method:

- Find variable with different shapes for signal and background distribution
 - determine template for each distribution
- Estimate event composition by varying the template scales to fit the data Example for QCD estimation in semileptonic $t\bar{t}$ channel:

•
$$H_T^{\text{lep}} = p_T(\mu) + \text{MET}$$

- Main difficulty
 - getting reliable background shapes

Template Fit - Distribution Shapes

V+jets and signal:

Trust simulation and simply take simulated distributions

QCD:

- Trust shape of QCD distribution?
- Cross check with distribution from control region in data
 - same problems like in ABCD method
 - * signal contamination and correlation
 - signal contamination results in overestimation of background
 - correlation can be estimated
 - * determine template from different slices of control region
- Quality of the fit can be used to validate shapes

Summary

Background estimation is most important systematic uncertainty

- top cross section measurement
- top mass determination

Different methods for data driven background estimation are available:

- ABCD method mainly QCD estimation
- Matrix method all backgrounds with different number of isolated leptons
- Charge Asymmetry charge asymmetric backgrounds like W+jets
- Template Fits all backgrounds
- Cross checks between methods possible

Should get reasonable results already for the full 2010 data set

Statistical uncertainties still dominate