

4th generation synchrotron complex with X-ray free electron laser (general overview of the USSR project)

Marchenkov Nikita

01.12.2021

Federal program for synchrotron-neutron research

In accordance with the Decree, the NRC "Kurchatov Institute" was designated as the **head scientific organization** for the implementation of the Federal Scientific and Technical Program

УКАЗ президента российской федерации

О мерах по развитию синхротронных и нейтронных исследований и исследовательской инфраструктуры в Российской Федерации

В целях комплексного решения задач ускоренного развития синхротронных и нейтронных исследований, необходимых для создания прорывных технологий, а также обеспечения создания и развития исследовательской инфраструктуры в Российской Федерации п о с т а н о в л я ю:

1. Правительству Российской Федерации:

 а) в 3-месячный срок разработать и утвердить Федеральную научно-техническую программу развития синхротронных и нейтронных исследований и исследовательской инфраструктуры на 2019 - 2027 годы (далее - Программа);

б) обеспечить при разработке и реализации Программы:

определение основных направлений исследований, касающихся решения принципиально новых фундаментальных и крупных прикладных задач в целях реализации приоритетных направлений научно-технологического развития и достижения национальных

Decree of the President of the Russian Federation on the development of synchrotron and neutron research (25.07.2019) УТВЕРЖДЕНА постановлением Правительства Российской Федерации от 16 марта 2020 г. № 287

ФЕДЕРАЛЬНАЯ НАУЧНО-ТЕХНИЧЕСКАЯ ПРОГРАММА

развития синхротронных и нейтронных исследований и исследовательской инфраструктуры на 2019 - 2027 годы

ΠΑСΠΟΡΤ

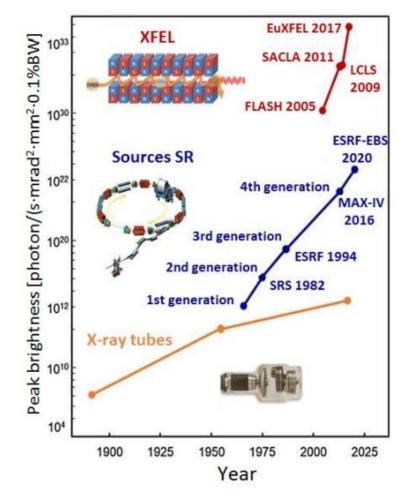
Федеральной научно-технической программы развития синхротронных и нейтронных исследований и исследовательской инфраструктуры на 2019 - 2027 годы

Наименование - Федеральная научно-техническая программа
 программы развития синхротронных и нейтронных исследований и исследовательской инфраструктуры на 2019 - 2027 годы

инфра Основание - Указ I лик разработки от 25

для разработки Программы

 Указ Президента Российской Федерации от 25 июля 2019 г. № 356 "О мерах по развитию синхротронных и нейтронных исследований и исследовательской инфраструктуры в Российской Федерации"


Federal program for the development of synchrotron and neutron research until 2027 (16.03.2020)

Vladimir Putin's visit to the National Research Center "Kurchatov Institute" (10.04.2018)

Infrastructure of synchrotron researches in the world

Increase in peak brightness of synchrotron radiation sources and free electron lasers

BREAKTHROUGH TECHNOLOGIES

ESRF (6 GeV) France

KISI-Kurchatov (2,5 GeV)

Russia

APS - USA Spring-8 - Japan ESRF - EBS - France Petra III + XFEL - Germany

FLAGSHIP SYNCHROTRONS 6 - 8 GeV (~1000 m)

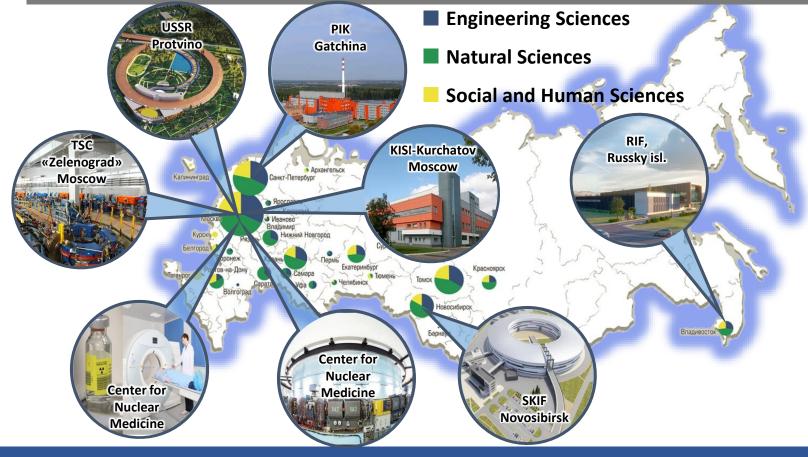
Technological independence

Spring – 8 (8 GeV) Japan

BASIC SYNCHROTRONES

(technological and specialized) «Workhorses» - 1,5-3 GeV (>70 units)

CIESS, CESR CIESS ALBA (3 GeV) Spain


Support and development of existing technologies

Concept of synchrotron-neutron facilities landscape in Russia

INTEGRATION AND COMPLETENESS OF THE FACILITIES SCIENTIFIC TASKS, EFFECTIVE DISTRIBUTION OF RESOURCES

- Obtaining breakthrough scientific results
- Regional development, including education, science and industry
- Transfer of scientific results to technology
- Development of nuclear medicine technologies

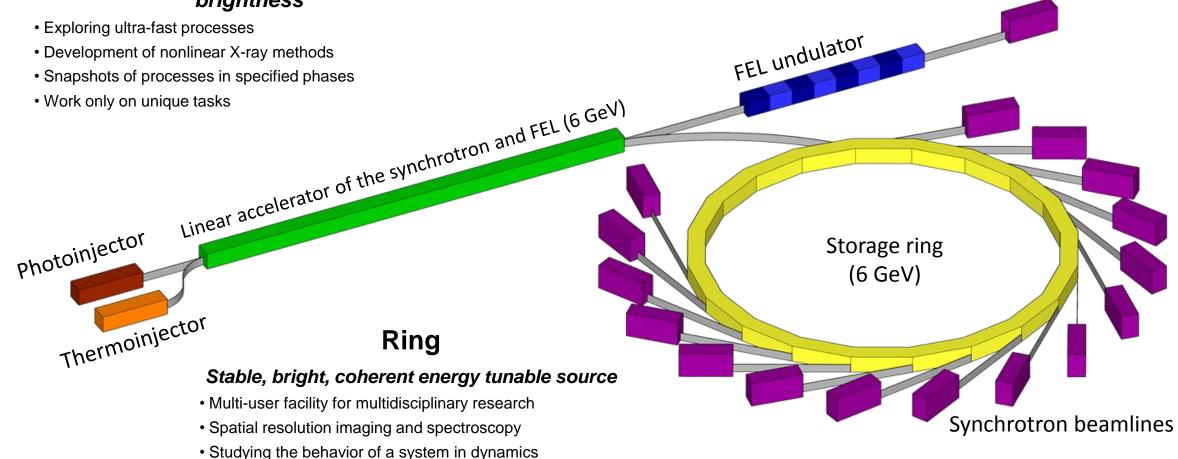
Facilities are divided into 3 basic categories:

- Leading the world level USSR, PIK, OMEGA
- Basic facilities

SKIF, KISI-Kurchatov, RIF

• technological facilities and specialized including nuclear medicine facilities

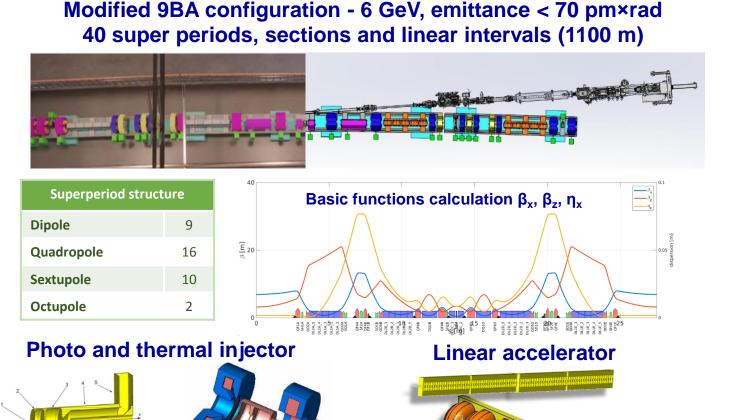
- Concepts developed for megascience-class facilities
- The basic technical characteristics of the installations are approved by the scientific and technical council


Scheme of the accelerating-storage complex

FEL beamlines

Free Electron Laser

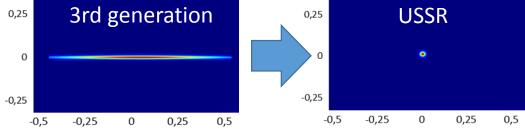
Ultra-short pulses and ultra-high peak brightness

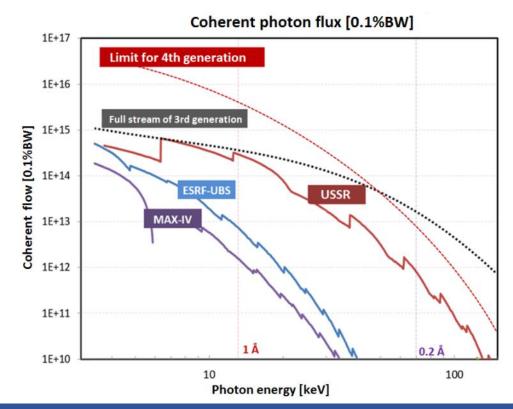


A fundamentally new and promising USSR source – 4th generation synchrotron source (6 GeV) + X-ray free electrons laser

Key parameters	
Perimeter (circumference of the electron beam trajectory):	more than 1100 m
Energy e- in the storage ring (the higher the energy, the higher the brightness):	6 GeV
Emittance (the product of the beam size by its divergence - the "quality" of the SR):	70 pm×rad
Brightness (the brighter, the less time it takes to perform an experiment, less sample volume is required): Average brightness of the ring storage Peak brightness of a free electron laser (FEL)	10²³ (ph/s/mm²/0.1% BW) 10³³ (ph/s/mm²/0.1% BW)
Spectral composition of radiation (range of available SR energies):	200 eV – 500 keV
Maximum number of experimental beamlines (including FEL beamlines):	52 (6)
Full coherence of radiation (self-consistency of the phases of the X-ray waves that make up the radiation beam)	investigation of disordered objects

USSR – on the way to the diffraction limit


Energy: 6 GeV


80-100 sections

80 MeV per section

BAS cells: 2797 MHz, 400-450 kV / cm

Electron beam size

01.12.2021

Bunch charge:> 1 nC

Photocathode: Cs₂Te

Photopulse: 0.3-0.2 ps; > 10 Hz

Accelerating field: 400-800 kV / cm

Thermal pulse: up to 600 ns; > 30 Hz; 120 keV

International cooperation in the framework of the CremlinPlus project

CREMLIN P_LUS

Connecting Russian and European Measures for Large-scale Research Infrastructures

Development of the main ring magnetic structure of the USSR synchrotron

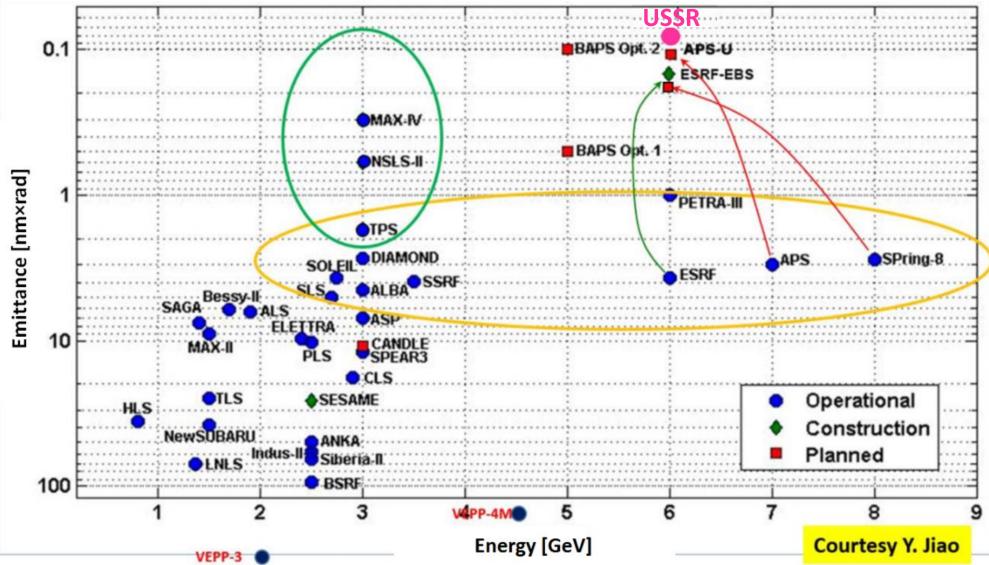
ESRF-EBS

Synchrotron USSR beam monitoring and diagnostics system

S Development of the USSR synchrotron photogun - an electron source for a free

electron laser

Simulation of the elements of the channel in order to determine the **impedances** and their influence on the **stability of the electron beam** of the USSR synchrotron


Development of **beamlines projects** of the USSR synchrotron

Development of the USSR synchrotron **linear accelerator** for accelerating an electron beam up to 6 GeV energy and top-up injection

World-wide landscape of SR sources

4th generation synchrotron radiation sources

USSR, Russia, 70 pm*rad (6 GeV)

	Horizon. Emittance [pm * rad]	Energy [GeV]	Circumference (m)	Year
USSR	70 (60)	6	1100	2027
ESRF-EBS	147	6	850	2020
PETRA-4	20	6	2200	2027
APS-U	50	6	1100	2025
SPring-8	67	6	1400	
HEPS	60	6	1296	2025
TeVUSR	2	11	6210	
PEP-X	11	4.5	2199	
SKIF	75	3	477	2024
MAX - IV	330	3	530	2019
Sirius	250	3	518	2019

Operating sources of SR

ESRF-EBS, France, 130 pm*rad (6 GeV) MAX-IV, Sweden, 250 pm*rad (3 GeV)

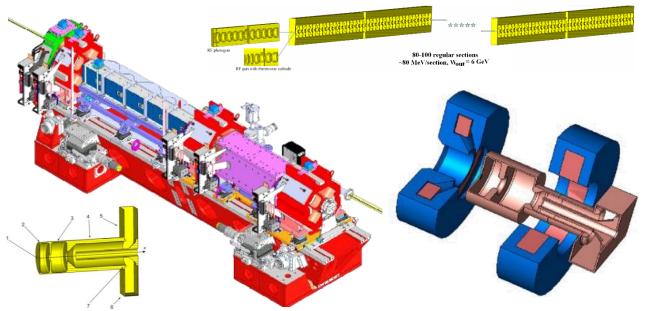
Planned / under construction

APS-U, USA, 42 pm*rad (6 GeV)

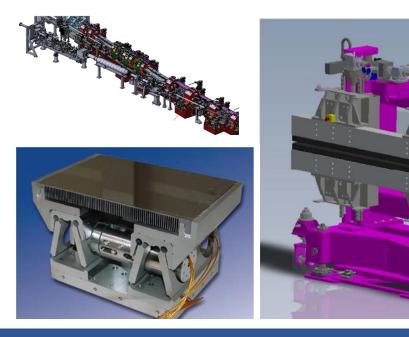
Spring-8 II, Japan, 67 pm*rad (6 GeV)

PEP-X, USA, 11 pm*rad (6 GeV)

PETRA-IV, Germany, 15 pm*rad (6 GeV)


Prototypes

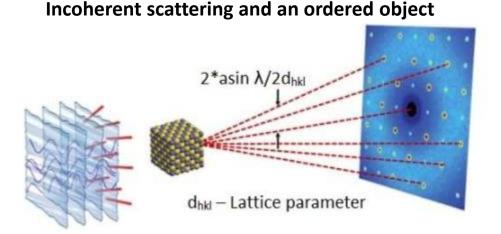
Based on the results of R&D, set of **working prototypes and documentation will be developed** for the following units and systems:

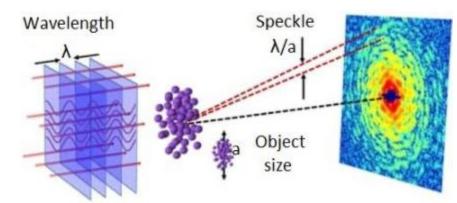

Accelerator storage complex:

- Photogun
- Regular Linear Accelerator Section
- Regular section of the main ring
- Vacuum section
- Control, beam monitoring and diagnostics system

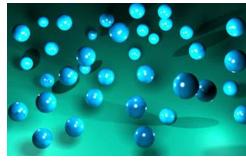
Beamlines:

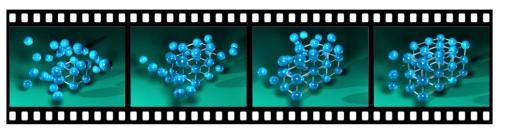
- Typical frontend for an undulator line
- Typical undulator
- X-ray optics elements
- SR detection systems
- Mechanical and kinematic systems




XX CENTURY - The era of crystallography XXI CENTURY - Research of disordered objects

The structure of disordered objects (nano-objects)


Coherent scattering and disordered object


The interference pattern allows you to determine the structure of the sample!

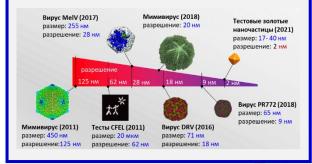
Dynamics of the nanoworld at a fundamental level

Chaos

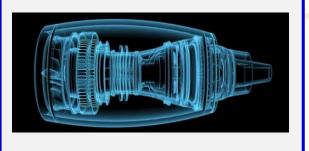
4-d crystallography

Order

01.12.2021



- Wide energy range (200 eV 500 keV): spectroscopy of light and heavy elements in the bulk of the material. The brightest source in the hard range. 3D mapping and visualization in depth of the sample.
- Peak brightness (more than 10²² for SR, more than 10³¹ for XFEL): nanoscale objects, atomic resolution. Multiscale visualization. Fast mapping with chemical and magnetic contrast.
- Short impulse (duration from ns to fs): ultra-high resolution structural diagnostics.
- Coherence (30 100% depending on the wavelength): atomic resolution for disordered structures, including single molecules, viruses. Lensless imaging for hard range. Phase contrast imaging.


Scientific case

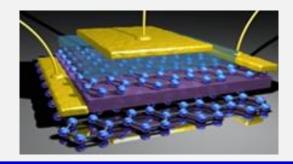
Single particle visualization (brightness, coherence)

Massive objects visualization (energy, brightness, coherence)

Dynamics of the nanoworld with femtosecond resolution, quantum systems (brightness, coherence, pulse duration)

- Nature-like technologies (bioorganic, hybrid materials, artificial cell)
- Personalized medicine and diagnostics
- Electronic component base (magnetic materials, nanoelectronics, neuromorphic systems)
- Construction materials and products
 (massive machine parts, welds, titanium, coatings, shape memory)
- Additive technologies and materials
- Materials with unique properties
- New energy (superconductors, thermo-photo-electricians, electromotion)

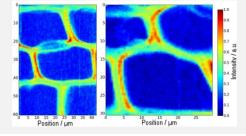
Extreme state of matter (brightness, coherence, energy, power and pulse width)

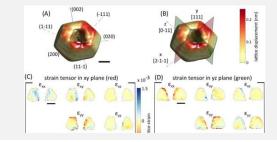


Research of biological objects (brightness, coherence, energy)

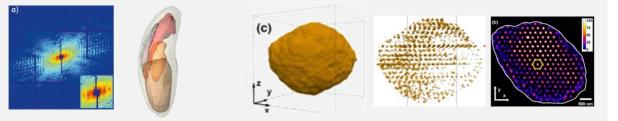
	1	SER.	
		* 🥰 +	Q
Classification	Filtering	Orientation determination	Phase retrieval
(a)	<i>(b)</i>	(c)	(d)

Research of electronic and magnetic properties (brightness, coherence, energy)




USSR beamlines: stage 1

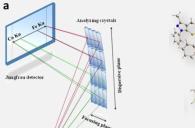
Nanodiffraction beamline

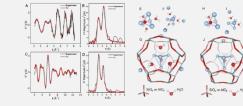

(Materials Science, NBIKS technologies, Microelectronics)

Coherent application beamline

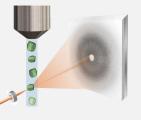
(Nature-like technologies, Materials Sciences)

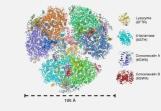
Multi-scale imaging beamline


(Materials Science, Socio-humanitarian Technologies, Medicine)



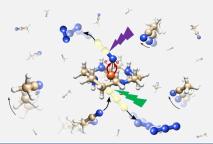
X-ray spectroscopy beamline


(Structural Chemistry and Materials Science, Biology and Geology)

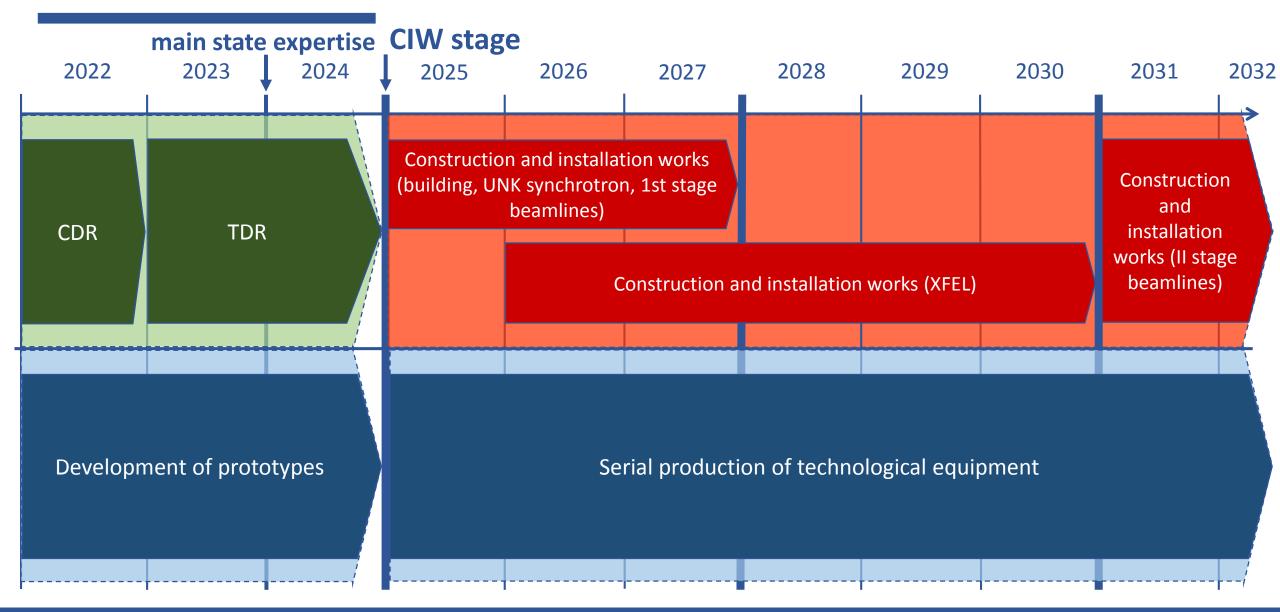


Serial crystallography beamline

(Structural biology, nature-like technologies)



Time resolution beamline


(Materials Sciences, Nature-like technologies)

Roadmap of the USSR project

The creation of a USSR synchrotron radiation source will determine **Russia's leadership** in the field of synchrotron research **for several decades** and will ensure the creation of breakthrough technologies that form a fundamentally new basis of the Russian economy.

THANK YOU FOR THE ATTENTION!