
Automated Particle Picking Tool for Cryo-EM Tomograms

By Manaz Kaleel

Cryo electron microscopy and tomography

 Cryo electron microscopy (CryoEM) is an electron microscopy technique used to image samples of interest at cryogenic temperatures (< -150 °C) that are embedded in an environment of vitreous ice

- Cryo-electron tomography (CryoET) is an imaging technique to reconstruct 3D views of samples from a series of 2D images obtained from tilting the sample
- The resulting image is a detailed 3D reconstruction of a cellular, macromolecular or material specimen

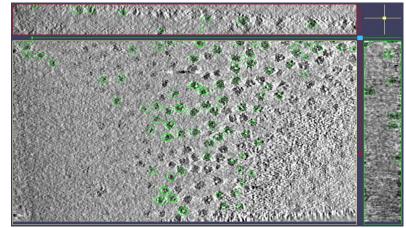

Principle of Cryo-Electron Tomography

Image source: schaechter.asmblog.org

Particle picking and Subtomogram averaging

 Identifying molecular components from a 3D reconstruction (tomogram) remains challenging due to the crowded nature of the environments these molecular components reside and the low signal to noise ratio

 Once the components/particles are located, then they can be averaged to provide a higher resolutior picture of the particle of interest ("subtomogram averaging")

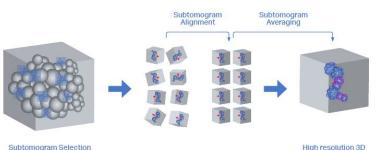
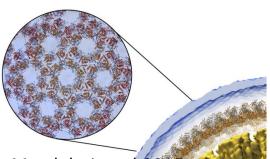


Image source: Topf-lab & blog.delmic.com

Our aims and what do we do


Create a tool to identify particles of interest from a 3D tomogram

Make the tool as automated as possible with minimal human labor

- Make the tool as user friendly as possible
- For this, we harness the power of Deep Learning
- The engine of the particle picking mechanism is powered by a deep Residual network

Dataset

- Herpesvirus (pseudorabies or PRV) dataset
- Vesicle covering the virus
- The virus capsid is enclosed by nuclear egress complex (NEC) proteins attached to the inner side of the vesicle membrane
- Picking the **hexamers** (made of 6 heterodimers) that form the NEC pseudo-lattice
- Tomograms are binned and low pass filtered



Image source: Topf-lab & Zeev-Ben-Mordehai et al 2015

Initial results				
•	Performance of the mach learning models for test s			
•	Top model picks nuclear complex with the MCC of			

nearly 90% accuracy

hine set	
egress f 0.8 and	

coring_LI	
config_30	
config_24	
config_27	
config_33	
config_31	
config_43	
config_23	
config_39	
config_40	
config_32	
config_35	
config_25	
config_29	
config_34	
config_38	
config_28	
config_36	
config_44	
config_22	
config_26	
config_41	
config_42	

config_37

Configuration

config 19

config 21

MCC

0.8

0.8

0.77

0.74

0.73

0.73

0.72

0.72

0.71

0.71

0.7

0.69

0.69

0.68

0.67

0.67

0.67

0.65

0.65

0.65

0.64

0.62

0.61

0.61

0.6

ACC

89.88

89.88

88.25

86.25

86.38

85.94

85.06

85.44

85.19

84.06

84.38

83.44

83.19

83.38

83.44

82.06

81.94

81.94

80.31

79.81

80.31

79

81.5

85.5

87

F1-Score

0.9

0.9

0.87

0.86

0.86

0.85

0.86

0.85

0.85

0.85

0.84

0.84

0.83

0.83

0.83

0.83

0.82

0.82

0.81

0.8

8.0

0.8

0.79

Acknowledgement

- Topf group
- Prof. Maya Topf
- Joseph Beton
- Tristan Cragnolini

And the rest of the Topf group

- Prof. Kay Grünewald
- Daven Vasishtan

Thank you