

LCLS-II-HE High Q₀ & Gradient R&D Program, First CM Test Results, and CM Plasma Processing Results

Argonr

Fermilab Jefferson Lab

Dan Gonnella for the LCLS-II HE Collaboration

SLAC National Accelerator Laboratory

January 25, 2020

- LCLS-II HE: Overview and Requirements
- High Gradient and Q₀ R&D
- Cryomodule Results
- Plasma Processing on the HE vCM
- Conclusions & Outlook

LCLS-II-HE: Overview and Requirements

- LCLS-II-HE will expand the superconducting linac with an additional 24 cryomodules (23 in L4 and 1 with the new injector)
- These cryomodules will extend the energy reach of the machine to 8 GeV
- In order to meet this energy gain, the state-of-the-art for SRF cavities needs to pushed significantly

Parameter	LCLS-II	LCLS-II-HE		
# 1.3 GHz CMs	35	24		
Operating Gradient	16 MV/m	20.8 MV/m		
Required Q ₀ at Operating Gradient	2.7x10 ¹⁰	2.7x10 ¹⁰		

LCLS-II is constructing two 4 kW cryoplants @ 2 K

- Operation at 4 GeV for LCLS-II can be achieved with a Q₀ of 1.2x10¹⁰
- Single-cryoplant operation of LCLS-II is a necessary condition for the success of HE
- Operating at 8 GeV for LCLS-II HE requires an average Q₀ of 2.7x10¹⁰

LCLS-II	LCLS-II-HE		
35	24		
16 MV/m	20.8 MV/m		
2.7 <mark>010</mark>	2.7x10 ¹⁰		
19 MV/m	23 MV/m		
	35 16 MV/m 2.7 0 ¹⁰		

- Operation at 4 GeV for LOLO-II can be achieved with a \mathbf{w}_0 of 1.2X \mathbf{v}_0
- Single-cryoplant operation of LCLS-II is a necessary condition for the success of HE
- Operating at 8 GeV for LCLS-II HE requires an average Q₀ of 2.7x10¹⁰

LCLS-II Vertical Test Performance vs Needs of HE

Q₀ performance for LCLS-II cavities at both 16 and 21 MV/m exceeds the requirements of LCLS-II-HE

LCLS-II Performance

- Nearly all cavities with improved processes passed LCLS-II specification
- Only 57% of cavities exceed the HE acceptance gradient of 23 MV/m

The Path to Higher Gradients and High Q₀

In order to meet the requirements of LCLS-II-HE, an R&D program was launched which focused on two main areas:

 Development of a new cavity doping recipe which would maintain high Q₀ while increasing the average quench gradient

2. Conduct a thorough dissection of the cavity production process and implement lessons learned from LCLS-II and improve QA processes

Smaller spread in cavity performance

Major Changes from LCLS-II Process

- New nitrogen-doping recipe identified from R&D on single and 9-cells
- 2N0 nitrogen-doping recipe vs 2N6 to improve quench field without impact to Q₀

Changes to Cavity Process Flow

Lessons learned from LCLS-II & HE R&D has resulted in two main changes to the cavity production process:

- Last portion of bulk EP and all of final EP must be done at "cold" temperatures
- An additional bulk EP and furnace step with increased RGA monitoring was added to reduce the chance of furnace contamination

Industry Produced 9-Cells with New Processes

- LCLS-II-HE commissioned the construction of 10 9-cell cavities from industry, produced with the 2N0 recipe for use in a *verification* cryomodule
- The improved processes described here and many more were implemented in the production
- All of the cavities passed the HE specification!
- Improvement of >3 MV/m compared with the LCLS-II average!
- High number of 2N0 statistics motivates the decision to use 2N0 in production 11

Comparison with LCLS-II

R&D Goals:

1

Improve quench, don't hurt Q₀ Smaller spread in cavity performance

First HE Cryomodule with 2N0 Cavities

- 8 of the 10 industrial produced 9-cell cavities were assembled into the HE vCM
- Tested at FNAL last Summer/Fall

First HE Cryomodule Results

Gradient results are excellent with all cavities operating stably above the HE operating gradient

Q₀ performance has shown an average of **3x10¹⁰ at 21 MV/m!**

First HE Cryomodule Results

Gradient results are excellent with all cavities operating stably above the HE operating gradient

Q₀ performance has shown an average of **3x10¹⁰ at 21 MV/m!**

Comparison with LCLS-II CMs

Gradient performance exceeded all LCLS-II modules! Average Q₀ in line with the best LCLS-II modules!

Comparison with LCLS-II CMs

Gradient performance exceeded all LCLS-II modules! Average Q₀ in line with the best LCLS-II modules!

Multipacting in the vCM

- A number of cavities showed multipacting in the range of 17-21 MV/m during the initial power rise
- Example on one cavity:
 - Initial rise to 16 MV/m with no quenches
 - Dozens of quenches encountered on each cavity during push to 21 MV/m
 - Generally increasing field and time to quench
 - Stable operation achieved after many quenches
- Significant impact on testing, commissioning, and operation of LCLS-II-HE

Extended Unit Test

- Part of vCM test plan was an extended unit test – try to operate all 8 cavities in SELAP at nominal module voltage 173 MV
- SLAC operators travelled to Fermilab and took shifts so that at least one operator would be in the control room 24/7
- Duration: 12 days

SLAC visiting operators: Sebastian Aderhold, Bob Legg, Janice Nelson, James Maniscalco, Lisa Zacarias FNAL RF operators: Andrew Cravatta, Sam Posen

Up Time / Down Time Statistics

Push for Module Voltage in GDR

Total voltage: 200.0 MV Average Gradient: 24.1 MV/m Duration >1 hour (ended by cavity quench when pushing more)

200

150

00

10⁻⁵

 10^{-6}

10⁻⁸

__10⁻⁹ 3

Pressure (torr)

Plasma Processing Applied to LCLS-II-HE vCM

- Procedure can be applied at room temperature *in-situ*, using the hardware present in the cryomodule: can address field emission mitigation without CM disassembly.
- Plasma processing developed for LCLS-II 1.3GHz cavities showed successful results in preserving N-doped cavity performance and FE mitigation
- Now applied for the first time to 1.3GHz cryomodule: LCLS-II-HE vCM

P. Berrutti et al., J. Appl. Phys. 126, 023302 (2019) B. Giaccone et al., Phys. Rev. Accel. Beams 24, 022002 (2021)

Plasma Processing Applied to LCLS-II-HE vCM

- Risk analysis and mitigation strategy to scale procedure from single cavity to entire cavity string - O - H₂O - Ne - CO - O₂ - CO₂ Forward Reflected 1E-6
- New vacuum cart to avoid pressure ٠ instabilities
- Plasma processing applied to 4 out of • 8 vCM cavities: CAV1-4-5-8
 - The 4 cavities were instrumented with • additional temperature sensors on the cavity surface and HOM cables

Example of experimental data collected during plasma processing of CAV4:

- RGA data a)
- Forward, reflected and transmitted power b) measured on the CAV4 HOM1 and HOM2
- HOM cables temperature profile measured on of c) all 4 instrumented cavities
- d) Temperature profile of CAV4 He vessel sensors

B. Giaccone, P. Berrutti, M. Martinello, et al.: Plasma cleaning of LCLS-II-HE verification cryomodule cavities. Preprint on Arxiv

Effect of Plasma Processing on Multipacting in vCM

	Before Plasma Processing				After Plasma Processing					
Cavity #	Max E _{acc} [MV/m]	Usable E _{acc} [MV/m]	Q₀ @ 21MV/m, 2K	MP quenches		Max E _{acc} [MV/m]	Usable E _{acc} [MV/m]	Q₀ @ 21MV/m, 2K	MP quenches	
1	23.4	22.9	3.0E+10		Y		23.8	23.3	3.4E+10	N
2	24.8	24.3	3.0E+10		Y		25.2	24.7	3.2E+10	Y
3	25.4	24.9	2.6E+10		Y		26.0	26.0	3.4E+10	Y
4	26.0	26.0	3.2E+10		Y		26.0	26.0	3.2E+10	N
5	25.3	24.8	2.9E+10		Y		25.5	25.0	2.8E+10	Ν
6	26.0	25.5	3.4E+10		Y		26.0	26.0	3.2E+10	Y
7	25.7	25.2	3.4E+10		Y		25.9	25.4	3.3E+10	Y
8	24.4	23.9	2.7E+10		Y		24.7	24.2	2.6E+10	N
Avg	25.1	24.7	3.0E+10				25.3	25.1	3.1E+10	
Total	209	205					210	208		

RF test after plasma processing demonstrated that:

- vCM performance is preserved
- Plasma processing did not introduce any contamination: vCM still FE-free

Before P.P. performance: S. Posen, et al. arXiv:2110.14580 (2021)

Plasma processing can eliminate multipacting:

 the 4 plasma processed cavities do not exhibit any MP quenches, contrary to the other 4 cavities
We could address both FE and MP, decreasing CM testing time, the commissioning time and increasing the reliability
during machine operations. Plasma processing procedure is fully validated

24

Conclusions & Outlook

- LCLS-II-HE R&D has demonstrated excellent performance in 9-cell cavities from vertical test through cryomodule test
- The HE vCM showed excellent performance with an average gradient of >25 MV/m!
- Plasma processing has been demonstrated on a full CM string and shown to "do no harm" to FE rates as well as reduce the impact of multipacting
- First production cavities have arrived at the partner labs look for first results in the next conference/workshop!

Special thanks to the LCLS-II HE collaboration at multiple labs around the US and to our cavity vendors in Europe! **Thanks for your attention!**

