

- Motivation
- SIMS Results
- Oxide Dissolution Model
- Benefits

Motivation

- SIMS Results
- Oxide Dissolution Model
- Benefits

Motivation - Impurity Alloying

[1] P. Dhakal, et al. Phys. Rev. Spec. Top. Accel. Beams 16.4 (2013): 042001

[2] A. Grassellino et al. *Supercond. Sci. Technol* 26.10 (2013): 102001.

[3] D. Gonnella, Daniel, et al. *Proceedings of IPAC2016, Busan, Korea* (2016).

Tuning Nb SRF Cavity Performance via Oxide Dissolution

4

Motivation - Impurity Alloying: Benefits

[2] Sung, Z. H., et al. *Proceedings of the International Conference on RF Superconductivity SRF*. 2019. [3] Maniscalco, J. T., D. Gonnella, and M. Liepe. *Journal of Applied Physics* 121.4 (2017): 043910.

Tuning Nb SRF Cavity Performance via Oxide Dissolution

Jefferson Lab

Motivation – Mid-T bake

[1] Posen, S., et al. *Physical Review Applied* 13.1 (2020): 014024.

[2] Romanenko, A., et al. Physical Review Applied 13.3 (2020): 034032.

[3] H. Ito et al. Progress of Theoretical and Experimental Physics, 2021;, ptab056

Tuning Nb SRF Cavity Performance via Oxide Dissolution

6

• Motivation – Previous Works

[1] F. Palmer, R. Kirby, F. King, and E. L. Garwin, Nucl. Instrum. Methods. Phys. Res. A: 297, 321 (1990).
 [2] F. Palmer, IEEE Transactions on Magnetics 23, 1617 (1987).
 Tuning Nb SRF Cavity Performance via Oxide Dissolution

- Motivation
- SIMS Results
- Oxide Dissolution Model
- Benefits

SIMS Results - Secondary Ion Mass Spectrometry

[1] https://www.cameca.com/products/sims/technique

٠

[2] Cameca: IMS 7f-GEO www.cameca.com/instruments-for-research/ims7fgeo.aspx

[3] P. Dhakal, et al. Phys. Rev. Spec. Top. Accel. Beams 16.4 (2013): 042001 [4] Angle, Jonathan W., et al. J. Vac. Sci. Technol. B 39.2 (2021): 024004. Tuning Nb SRF Cavity Performance via Oxide Dissolution

Jefferson Lab

9

 Clean Nb has background C,N,O impurity concentrations at ~0.005 at. %

- After vacuum annealing at 300 C for 2.3 hr we find a large enhancement in O.
- C and N have diffusion coefficients 2-3 orders of magnitude less than O
- O concentrations similar to that of N in N-alloyed cavities
 ¹⁰ Jefferson Lab

- Motivation
- SIMS Results
- Oxide Dissolution Model
- Benefits

Ciovati's Native Oxide Dissolution and O Diffusion Model

$$\frac{\partial c}{\partial t} = D(T) \frac{\partial^2 c(x,t)}{\partial x^2} + q(x,t,T).$$

$$\frac{\partial c(x,t)}{\partial t} = D(T) \frac{\partial^2 c(x,t)}{\partial x^2} + q(x,t,T).$$

$$\frac{\partial c(x,t)}{\partial t} = D(T) \frac{\partial^2 c(x,t)}{\partial x^2} + q(x,t,T).$$

$$\frac{\partial c(x,t)}{\partial t} = D(T) \frac{\partial^2 c(x,t)}{\partial x^2} + q(x,t,T).$$

$$\frac{\partial c(x,t)}{\partial t} = v(x,t) + u(x,t)$$

$$\frac{\partial c(x,t)}{\partial t} = \frac{\partial c(x,t)}{\partial t} + \frac{\partial c(x,t$$

[1] Ciovati, Gianluigi. Applied physics letters 89.2 (2006): 022507. Tuning Nb SRF Cavity Performance via Oxide Dissolution

v(x,t) =

u(x,t) =

Ciovati's Model – SIMS O Concentration Depth Profiles

- Measurements are consistent with Ciovati's model
- Predictability and ability to tune interstitials by changing only temperature and time of vacuum anneal
- Oxygen source is the native oxide

 $\frac{superficial \ dissolved \ oxygen}{v_0 = 3.5 \ O \ \% \ nm}$ $E_{aD} = 119.9 \ kJ/mol$ $D_0 = 0.075 \ cm^2/s$

 $\frac{oxide \ dissolution}{u_0 = 200 \ O \ \% \text{ nm}}$ $E_{ak} = 131 \text{ kJ/mol}$ $A = 0.9 \times 10^9 \text{ 1/s}$

Oxygen Content

Role of Oxygen in Infusion Recipes?

• Can N infusion-like recipes be developed using this model?

[1] A. Romanenko, , in 19th International Conference on RF Superconductivity (JACoW, Dresden, 2019).

[2] J. Maniscalco, et al., in 19th International Conference on RF Superconductivity (JACoW, Dresden

¹⁷ Jefferson Lab

- Motivation
- SIMS Results
- Oxide Dissolution Model
- Benefits

• Benefits – Furnace

[1]

• O source is the oxide, no gas injection required

[1] Ciovati, G., et al. *Physical Review Special Topics-Accelerators and Beams* 13.2 (2010): 022002.

• Simple process

[1] H. Ito et al. Progress of Theoretical and Experimental Physics, 2021;, ptab056

[2] P. Dhakal *Physics Open* (2020): 100034.

[3] F. He, et al. Superconductor Science and Technology 34.9 (2021): 095005.

Benefits – Inherently Conformal

- The oxygen source is conformal to the surface of the cavity
 - Uniformity of O interstitials

Conclusions/Where next?

Conclusions

- Using SIMS, we measured O,C, N concentration depth and showed major enhancement in O impurities
- RF and SIMS measurements confirmed that the alloying effect of vacuum annealing is due primarily to oxide dissolution and diffusion
- Constrained a model of native oxide dissolution for predictive O-alloying

Where next?

- Heat treat additional cavities to evaluate performance scaling with O content.
- Explore the role of tailored impurity diffusion profiles within the RF penetration depth
- Explore multiple dissolutions or multi-step temperature profile

JLab

Ari Palczewski

Charlie Reece

Virginia Tech (SIMS)

Jonny Angle Michael Kelley

NCSU Fred Stevie

JLab Staff

Thanks for your time!

Questions?

RF surface resistance tuning of superconducting niobium via thermal diffusion of native oxide IP

Cite as: Appl. Phys. Lett. 119 , 082601 (2021); doi: 10.1063/5.0059464	
Submitted: 9 June 2021 · Accepted: 9 August 2021 ·	
Published Online: 25 August 2021	View Online

E. M. Lechner,^{1,a)} D J. W. Angle,² F. A. Stevie,³ M. J. Kelley,^{1,2} D C. E. Reece,¹ d and A. D. Palczewski¹

https://doi.org/10.1063/5.0059464

Export Citation

