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Dynes Superconductor

Original motivation
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Green Function method

In the superconductive state
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Green Function method

In the superconductive state

Go(k,t —t') = —i({ck(t)ck+(t')})@(t —t) e Main object: Nambu Gorkov avemged Green’s function
’ G, defined by: G} = Gyt — %
—H/T N y—1 e . ’ .
e 1) Gy (k,w,) = w, Ty — €73 the bare Green’s function.
(X)=Tr(X | o
Z wy: Matsubara frequencies, 7;: Pauli matrices.

11) f)n = wwn(l — Zy)10 + Zn Ay 110 Self-energy generated by

C(k B disorder and pairing interactions. Functions A, and Z,

(k, wn) = W, — & contain complete information about the properties of the
considered superconductor.
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Coherent Potential Approximation
Soven, Velicky et. al., Weinkauf and Zittart 75

CPA (nonperturbative approach — self-consistent theory):




Dynes Superconductor
Model

e Hamiltonian:

H = H, ZA(CilCiT h.c.) Z ([-Iic;‘;cia Vz‘.UCZ;Cia)

1,0

Hy: free electrons.
A: spatially homogeneous pairing interaction.
U: pair-conserving fluctuating field.
V': pair-breaking fluctuating field with fixed polarization in spin space.

e P.(U) and P,,(V): Uncorrelated and even distributions of
potential (UU) and magnetic (V') impurities.




Green function + CPA

e Main object: Nambu Gorkov averaged Green's function e CPA equations:

Gz, defined by: G5} = Gt — 3. - . AN
M Y- Gpm G, = <(gn I _ V4 Zn) >
1) Go_l(k, wy) = 1w,Ty — €x73: the bare Green’s function. Impurity potential: U — Ar+ U+ Vo,

wy: Matsubara frequencies, 7;: Pauli matrices. . y _ ) _ | _
The index 2z denotes the diagonal component (in coordinate space) of a matrix and

1) En = wwn(l — Zy)10 + Zn Ay 110 Self-energy generated by (f(U,V)) = [dU [ dVP,(U)P,(V)f(U,V).
disorder and pairing interactions. Functions A, and Z,
contain complete information about the properties of the P,,(V) : Lorentzian
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Dynes Superconductor

From the bullet train
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Dynes Superconductor Generalization

From the bullet train
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Dynes Superconductor

Electromagnetic properties and optical conductivity

Drude Model Electromagnetic properties of impure superconductors with pair-
breaking processes

FrantiSek Herman and Richard Hlubina
Phys. Rev. B 96, 014509 — Published 12 July 2017
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Dynes Superconductor

Electromagnetic properties and optical conductivity

Phys. Rev. B 96, 014509
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Dynes Superconductor

Electromagnetic properties and optical conductivity
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Dynes Superconductor

Implications towards the superconductive cavities: Coherence peak

Microwave response of superconductors that obey local hw <T' < T < Ao. (6)
electrodynamics In other words, we will be concerned with moderately
FrantiSsek Herman and Richard Hlubina clean superconductors with weak but non-vanishing pair-
Phys. Rev. B 104, 094519 — Published 21 September 2021 breaking scattering.
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FIG. 1. Temperature dependence of the w — 0 limit of 1(7")/on as a function of T'/T. for several values of v and .. Note
that the same peak height can be reached for diflerent combinations of v and ~s.



Dynes Superconductor

Implications towards the superconductive cavities: Coherence peak
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D. Bafia et al., ArXiv:2106.10601 (2021)



Dynes Superconductor

Implications towards the superconductive cavities: Coherence peak
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FIG. 3. Dependence of the slopes v/vs = f(k) of the equal-
k lines in the small-scattering rate corner of Fig. 2 on the
coherence-peak height k. The inset shows an analogous plot
of the slopes 7/vs of the equal-Thax/Te lines in the small-
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Dynes Superconductor

Implications towards the superconductive cavities: Coherence peak
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Dynes Superconductor

Implications towards the superconductive cavities: Coherence peak

and Imaginary part of DC Conductivity
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FIG. 6. Temperature dependence of the imaginary part of
the microwave conductivity o2(71") /o2(0) for several choices of
v and 7s. Note that when s decreases and v increases, the
curves are pushed slightly downwards with respect to Eq. (14),
which is shown by the blue line.
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Dynes Superconductor

Implications towards the superconductive cavities: Imaginary part

of DC Conductivity
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FIG. 6. Temperature dependence of the imaginary part of
the microwave conductivity o2(1") /o2(0) for several choices of
v and vs. Note that when s decreases and ~ increases, the
curves are pushed slightly downwards with respect to Eq. (14),
which is shown by the blue line.
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FIG. 7. Coefficient A describing the T-dependence of the
imaginary part of the microwave conductivity close to 7%,
o2(T)/0o2(0) = A(1 — T/T¢), plotted as a function of ~s for
several values of v and z. Note that A depends only very
weakly on ~ in the limit of small pair breaking.
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Research going in similar direction

If not the same

Cornell University

rXiv.org > cond-mat > arXiv:2110.00573 Search...
Help | Adv:

Condensed Matter > Superconductivity

[Submitted on 1 Oct 2021]

Effects of nonmagnetic impurities and subgap states on the kinetic inductance, complex conductivity, quality factor
and depairing current density

Takayuki Kubo

We investigate how a combination of a nonmagnetic-impurity scattering rate y and finite subgap states parametrized by Dynes I" affects various physical quantities relevant to to superconducting devices:
kinetic inductance L, complex conductivity o, surface resistance Ry, quality factor O, and depairing current density J;. All the calculations are based on the Eilenberger formalism of the BCS theory. We
assume the device materials are extreme type-Il s-wave superconductors. It is well known that the optimum impurity concentration (y/A, ~ 1) minimizes R;. Here, A, is the pair potential for the idealized (
I' - 0) superconductor for the temperature 7' — (. We find the optimum I" can also reduce R, by one order of magnitude for a clean superconductor (y/Ay < 1) and a few tens % for a dirty superconductor
(y/Ag > 1). Also, we find a nearly-ideal (I'7Ay < 1) clean-limit superconductor exhibits a frequency-independent R, for a broad range of frequency @, which can significantly improve Q of a very compact
cavity with a few tens of GHz frequency. As " or y increases, the plateau disappears, and R, obeys the w? dependence. The subgap-state-induced residual surface resistance R, is also studied, which can
be detected by an SRF-grade high-Q 3D resonator. We calculate L;(y,I', T) and J;(y,I', T), which are monotonic increasing and decreasing functions of (y,I’, T), respectively. Measurements of (y,I") of
device materials can give helpful information on engineering (y,I") via materials processing, by which it would be possible to improve Q, engineer L;, and ameliorate J;.

Comments: 15 pages, 15 figures
Subjects: Superconductivity (cond-mat.supr-con); Instrumentation and Methods for Astrophysics (astro-ph.IM); Accelerator Physics (physics.acc-ph)
Cite as: arXiv:2110.00573 [cond-mat.supr-con]

(or arXiv:2110.00573v1 [cond-mat.supr-con] for this version)




Effects of nonmagnetic impurities and subgap states on the
Kinetic inductance, complex conductivity, quality factor and
depairing current density (Kubo, 2021) Appl Prys. Let. 88, 111116 (2000
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FIG. 4. Kinetic inductivity at T//T.o = 0.1 as functions of
(a) nonmagnetic-impurity scattering-rate v/Ao = €0 /2limp

FIG. 2. (Color online) Inductance-limited recovery of NbN nanowires. Out-

* Important for klnetlc lnduCtance and(b)Dynestarameter.— put pulses are shown for 100 nm wide wires at 7=4.2 K, with [,
=11.5 nA, and dimensions: (a) 10 um X 10 um meander (total length

detGCtorS (KIDS) ?’nd 500 wm); (b) 4 um X6 um (120 um); (c) 3 um X 3.3 um (50 wm); and
SuperconduCtOI' Slngle—phOtOn (d) 5 um long single wire. Red dotted lines show the predicted pulse recov-

ery, with no free parameters, for each device based on its measured induc-

detGCtorS (SSPDS) tance: L,=415 nH, 110 nH, 44.5 nH, and 6.10 nH. These predictions in-

clude the effect of the measured f;=15 MHz and fy=4 GHz corner
frequencies of our amplifiers, and the assumptions: I <ly;,,, R,>2mfyL,,
and R, >50 () (the pulse risetime is then determined by fy); and (e) elec-
trical model; photon absorption corresponds to the switch opening, after
which the detector current goes nearly to zero, and is diverted into the 50 ()
load. The wire then becomes superconducting again, and the current resets
in a time 7. (f) Inductance at T=4.2 K vs room-temperature resistance for
290 individual nanowires from 0.5-500 um long and 20-400 nm wide,
with both straight and meander geometries, from two separate samples made
in separate fabrication runs. Points corresponding to the devices of (a)—(d)




Effects of nonmagnetic impurities and subgap states on the
kinetic inductance, complex conductivity, quality factor and
depairing current density (Kubo, 2021)
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FIG. 10. Frequency dependences of the surface resistance R
(a) calculated for different nonmagnetic-impurity scattering
rate v and (b) calculated for different Dynes T'.
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Condensed Matter > Superconductivity

[Submitted on 17 Dec 2021]

Model-independent determination of the gap function of nearly localized superconductors
Dusan Kavicky, FrantiSek Herman, Richard Hlubina

The gap function A(w) carries essential information on both, the pairing glue as well as the pair-breaking processes in a superconductor. Unfortunately, in nearly localized superconductors with a non-
constant density of states in the normal state, the standard procedure for extraction of A(w) cannot be applied. Here, we introduce a model-independent method that makes it possible to extract A(w) also
in this case. The feasibility of the procedure is demonstrated on the tunneling data for the disordered thin films of TiN. We find an unconventional feature of A(w) which suggests that the electrons in TiN are

coupled to a very soft pair-breaking mode.
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¢ Reduction of the antisymmetry in superconductive region | L y

e Possible experimental improvement 032 0 1 2 3
Prof. Szab6 and Samuely and their group focusing on STM experiment at the SAS in W/
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Condensed Matter > Superconductivity

[Submitted on 17 Dec 2021]

Model-independent determination of the gap function of nearly localized superconductors

Dusan Kavicky, FrantiSek Herman, Richard Hlubina

The gap function A(w) carries essential information on both, the pairing glue as well as the pair-breaking processes in a superconductor. Unfortunately, in nearly localized superconductors with a non-
constant density of states in the normal state, the standard procedure for extraction of A(@w) cannot be applied. Here, we introduce a model-independent method that makes it possible to extract A(w) also
in this case. The feasibility of the procedure is demonstrated on the tunneling data for the disordered thin films of TiN. We find an unconventional feature of A(w) which suggests that the electrons in TiN are
coupled to a very soft pair-breaking mode.
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Dynes Superconductors -Implications towards-
Radio-Frequency Cavities (FrantiSek Herman)

Take (stay) home messages

e Disorder effects reveal characteristic behaviour of the
superconductive state.

¢ Understanding the role of the different scattering mechanism can
enhance efficiency of the superconducting devices in the current
applications.

e Model-independent/Theory-model-tested approximative approach
may be very powertful tool in the situations where we touch the
unknown phenomena, but one needs to be very careful.
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