

Mitigation of parasitic losses in the QPR enabling direct measurements of low R_{res}

S. Keckert, W. Ackermann, H. De Gersem, X. Jiang, A. Ö. Sezgin, M. Vogel, M. Wenskat, R. Kleindienst, J. Knobloch, O. Kugeler, D. Tikhonov

2022-01-26

TESLA Technology collaboration meeting

STARTING SITUATION

→ Surprisingly high and similar residual resistance observed on various QPR samples

LHe, 1.8 K

SIMULATION PROCESS

THE SOLUTION

→ We have to "switch off" losses on the sample adapter flange

T_{max} = 2.5 K

 $T_{max} = 4.4 \text{ K}$

Same RF field, different color scale! (Eigenmode solver, 1 J stored energy)

THE SOLUTION

Thin film coating: Nb on stainless steel

- DCMS coating of surfaces that are exposed to RF fields
- few $\mu m \rightarrow$ full screening
- CF knife edge covered during coating

THE IMPACT

Measured $\Delta R = 24 n\Omega$

 ΔR is independent of RF field \rightarrow bias of R_{res} only

THE IMPACT

First "usable" R_{res} at the third QPR mode (1.29 GHz)

TABLE III. Residual resistance obtained from fitting and selected R_S measurement data at 2.0 and 4.5 K. For all data given, here a constant RF field level of 10 mT was applied.

Setup	Frequency	R _S at 2.0 K	<i>R</i> _S at 4.5 K	$R_{\rm res}$
	(MHz)	(nΩ)	(nΩ)	(n Ω)
Baseline	413	28.7	110	28.5
Niobium	417	4.7	74.2	4.2
Coated	844	15.2	284	13.1
Flange	1285	33.8	696	31.6

OUTLOOK #1: OPTIMIZE COATING

- Optimization covering masks ongoing
- 1st coating: Nb 'remnants' at bottom part of the flange
- 2nd coating: bottom part covered with 2nd mask
 - \rightarrow low adhesion at inner cylindrical surface due to resputtering

OUTLOOK #2: NEXT STUDIES

- Measured ΔR_s larger than expected from simulations
- Study the impact of geometry errors (broken symmetry, manufacturing tolerances)
- Example: tilt one pair of rods by 0.175°
 → displacement 1 mm

TABLE I. Sample temperature, effective power, and parasitic surface resistance for the first three quadrupole modes of the QPR resulting from the finite conductivity of the applied materials.

Q1			Q ₂		Q3				
<i>B</i> (mT)	<i>T</i> (K)	$P(\mathrm{mW})$	$R_{\rm S}$ (n Ω)	<i>T</i> (K)	<i>P</i> (mW)	$R_{\rm S}$ (n Ω)	<i>T</i> (K)	<i>P</i> (mW)	$R_{\rm S}$ (n Ω)
5	2.008	0.067	12.6	2.015	0.129	26.0	2.032	0.282	63.1
10	2.030	0.266	12.6	2.058	0.515	26.0	2.124	1.127	63.0
20	2.117	1.062	12.6	2.219	2.050	25.9	2.446	4.449	62.1
50	2.621	6.527	12.4	3.059	12.84	25.9	3.879	30.08	67.3
100	3.803	28.17	13.4	4.801	58.56	29.5	6.513	131.6	73.6

OUTLOOK #2: NEXT STUDIES

- Study the impact of geometry errors (broken symmetry, manufacturing tolerances)
- Example: tilt one pair of rods by 0.175°
 → displacement 1 mm

- CST eigenmode solver (color plot with linear scaling!)
- Asymmetric quadrupole mode
 - ightarrow increased fields in the coaxial structure
- Drastic impact for Q3

[Courtesy: W. Ackermann, TEMF, TU Darmstadt]

Blue: forward travelling Red: backwards travelling Logarithmic scaling Dipole cutoff at 1.24 GHz → travelling wave!

[Courtesy: W. Ackermann, TEMF, TU Darmstadt]

TILTED RODS (0.175°)

BASELINE

Blue: forward travelling Red: backwards travelling Logarithmic scaling

\rightarrow Nb coating also reduces the impact of geometrical imperfections

[Courtesy: W. Ackermann, TEMF, TU Darmstadt]

SUMMARY

- Initially: measured R_{res} unexpectedly high •
- Cause: parasitic heating on nc adapter flange ٠ \rightarrow understood by extensive numerical simulations
- Solution: few µm of Nb coating on the stainless steel flange ٠
- Verified experimentally with QPR data •
- → Coated flange is new standard for QPR measurements

Thank you for your attention !

[AIP Advances 11, 125326 (2021), doi: 10.1063/5.0076715]

16

UNIVERSITÄT

TECHNISCHE UNIVERSITÄ

darmstadt

es	ARTICLE

scitation.org/journal/adv

HZB Helmholtz

Zentrum Berlin

Mitigation of parasitic losses in the guadrupole resonator enabling direct measurements of low residual resistances of SRF samples

AFFILIATIONS

AIP Advan

¹Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany ²Technische Universität Darmstadt, Schloßgartenstraße 8. 64289 Darmstadt, Germany ³Universität Siegen, Adolf-Reichwein-Straße 2a, 57076 Siegen, Germany ⁴Universität Hamburg, Mittelweg 177, 20148 Hamburg, Germany

OUTLOOK #2: NEXT STUDIES

- Study the impact of geometry errors (broken symmetry, manufacturing tolerances)
- Example: tilt one pair of rods by 0.175°
 → displacement 1 mm

- CST eigenmode solver (color plot with linear scaling!)
- Asymmetric quadrupole mode
 - ightarrow increased fields in the coaxial structure
- Drastic impact for Q3

[Courtesy: W. Ackermann, TEMF, TU Darmstadt]

