Supercond. Sci. Technol. 34 (2021) 065001 (11pp)

https://doi.org/10.1088/1361-6668/abf54d

Improvement of the first flux entry field by laser post-treatment of the thin Nb film on Cu

R Ries^{1,*}, E Seiler¹, F Gömöry¹, A Medvids², P Onufrijevs², C Pira³, E Chyhyrynets^{3,4}, O B Malyshev⁵ and R Valizadeh⁵

¹ Institute of Electrical Engineering, SAS, Dúbravská cesta 9, 841 04 Bratislava, Slovakia

² Institute of Technical Physics, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P Valdena 3/7, Riga LV-1048, Latvia

³ Istituto Nazionale di Fisica Nucleare INFN, Viale dell'Università 2, 35020 Legnaro, Italy

⁴ University of Padua, Via 8 Vebbraio 1848, 35122 Padova, Italy

⁵ ASTeC STFC Daresbury Laboratory, Warrington, Cheshire WA4 4AD, United Kingdom

E-mail: rastislav.ries@savba.sk

Received 6 December 2020, revised 19 February 2021 Accepted for publication 6 April 2021 Published 30 April 2021

Introduction - SRF cavity

Introduction - cavity materials

- Bulk Nb state of the art
- Thin Nb film on Cu substrate
 - advantages:
 - higher thermal conductivity (better thermal stability to avoid hot spots)
 - better mechanical stability (Cu support)
 - reduced sensitivity to Earth's magnetic field trapping
 - absence of undissolved inclusions
 - material cost (10 times cheaper)
 - has not achieved the performance of bulk Nb cavities yet
 - possible solution: laser post-treatment of Nb surface

Samples

 Nb/Cu sample (Cu polished by EP+SUBU5, 3 μm thick Nb film deposited by magnetron sputtering)

 Sample cut to 5 pieces (2 x 2 mm): 1 reference and 4 irradiated by Nd:YAG laser with different energy doses (D4 = 140, D3 = 175, D2 = 233 and D1 = 350 J/cm²).

Measurements

- The structural properties were determined using SEM, AFM and XRD
- The SC properties were measured at 4.22 K in a DC parallel magnetic field using VSM

*H*_{en} - first magnetic flux entry field
 - determined as a field at which relative difference between initial mag. curve and LMT reaches 2%

SEM

Nb film after Laser irradiation

SEM

7

SEM

Surface roughness (AFM)

	Energy dose	$R_{\rm a}$ (nm)
a) b) c) d) e)	Non-irradiated $D4 = 140 \text{ J cm}^{-2}$ $D3 = 175 \text{ J cm}^{-2}$ $D2 = 233 \text{ J cm}^{-2}$ $D1 = 350 \text{ J cm}^{-2}$	$14.9 \pm 2.1 \\ 8.8 \pm 1.9 \\ 6.4 \pm 1.3 \\ 8.3 \pm 1.5 \\ 7.5 \pm 2.0$
		Decrease ~ 50%

XRD

After Laser irradiation ←

Energy dose	<i>a</i> (nm)	Crystalline size (nm)
Non-irradiated	0.329755 ± 0.000003	26.4
$D4 = 140 \text{ J cm}^{-2}$	0.32999 ± 0.00002	20.2
$D3 = 175 \text{ J cm}^{-2}$	0.32998 ± 0.00001	20.6
$D2 = 233 \text{ J cm}^{-2}$	0.329823 ± 0.000006	20.1
$D1 = 350 \mathrm{J} \mathrm{cm}^{-2}$	0.32995 ± 0.00003	19.7

Weak increase 0.08% at max.

<u>Decrease</u> 20 – 25%

SC properties

0 -0.2 m/m_{5K} -0.4 ←Non-irr. -0.6 **⊕**D1 9.05 9.15 9.25 9.35 ◆D2 -0.8 **≁**D3 <u>≁</u>D4 -1 9 5 10 6 7 8 *T* [K]

Critical temperature *T*_c

- <u>weak decrease</u> after laser irradiation

SC properties

	1.3						3E+05		
Energy dose	$\mu_0 H_{\rm en} ({\rm mT})$	$\mu_0 H_p (\text{mT})$		Δ	M	6.5E+04		 Non-irr. ➡ D1 ♦ D2 ₩ D2 	
Non-irradiated $D4 = 140 \text{ J cm}^{-2}$ $D3 = 175 \text{ J cm}^{-2}$ $D2 = 233 \text{ J cm}^{-2}$ $D1 = 350 \text{ J cm}^{-2}$	31.0 ± 1.5 46.8 ± 2.3 51.0 ± 2.5 38.2 ± 1.9 39.4 ± 2.0	145 145 144 143 145	-0.35*	* • • • • • • • • • • • • • • • • • • •	-0.15	0.0E+00 0.03	0.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	★ D3 ★ D4 • ▲• • • • • • • • • • • • • • • • • •	
	<u>Increase</u> D4: 51% D3: 65% D2: 23% D1: 27%	practically no change				-6.5E+04 - <u>1.3E+05</u> μ ₀ H _a	(T)	μ ₀ Η _p	

 $\mu_0 H_{c2}$

0.35

The relative comparison between H_{en} , H_p , H_{c2} , surface roughness R_a , lattice parameter a, Nb crystalline size and M_{rem} for different laser doses applied on the Nb surfaces

Highlights !

- Compared to previous studies:
 - The complex investigation of structural and SC properties of Nb/Cu samples was performed after laser post-treatment of Nb surfaces
 - > 10 times higher laser energy doses were applied on Nb surfaces
- New findings provided by this work:
 - > the laser irradiation is able to reduce or even remove the surface defects and increase the first flux entry field H_{en}
 - > The higher energy doses causes subsurface melting and formation of hole defects resulted in stagnation of H_{en} increase
 - \succ the laser caused reduction in surface roughness R_a , reduction in Nb crystalline size, increase in magnetization loop width ΔM and slight decrease of T_c
 - \succ Practically no change in H_p , H_{c2} and lattice parameter was observed after laser irradiation

Thank you for attention