INTRODUCTION	LATTICE QCD	Heavy quark phenomenology	Results	SUMMARY
0000000	0000000	00000	0000000000000	00

Heavy quark physics & lattice QCD: exploring strong matter

Sinéad M. Ryan Trinity College Dublin

Colloquium @ DESY, November 17, 2021

INTRODUCTION	LATTICE QCD	Heavy quark phenomenology	Results	Summary
●0000000	0000000	00000	000000000000	00

Outline

- Setting the scene: particle physics
- QCD a quantum theory for quarks and gluons
- Lattice QCD calculating oberservable states to explore the phase diagram
- Selected recent results
- Summary & perspectives

INTRODUCTION	Lattice QCD	Heavy quark phenomenology	Results	Summary
•0000000	00000000	00000	0000000000000	OO

Outline

- Setting the scene: particle physics
- QCD a quantum theory for quarks and gluons
- Lattice QCD calculating oberservable states to explore the phase diagram
- Selected recent results
- Summary & perspectives

Many details and topics omitted for time constraints - APOLOGIES!

INTRODUCTION	LATTICE QCD	Heavy quark phenomenology	Results	Summary
0000000	0000000	00000	000000000000	00

THE PARTICLE PHYSICS LANDSCAPE

Standard Model of Elementary Particles

- Encompasses EM, strong & weak forces
- Embarassingly successful?
- Precision tests of SM may reveal new physics more important than ever!
- Meanwhile, new strong exotic matter unexpectedly discovered
- Accurate & precise theoretical understanding of QCD is crucial.

Many unanswered questions remain:

- What about gravity, dark matter, dark energy?
- How can we understand the matter-antimatter asymmetry?
- Are quarks and leptons truly fundamental and why are there exactly 3 generations?

• . . .

INTRODUCTION	LATTICE QCD	Heavy quark phenomenology	Results	Summary
0000000	0000000	00000	000000000000	00

(LATTICE) QCD FOR STANDARD MODEL PHENOMENOLOGY

Borsanyi et al [2002.12347]

Muon g-2

CKM Physics

NTRODUCTION	LATTICE QCD	HEAVY QUARK PHENOMENOLOGY	Results	Summary
0000000	0000000	00000	000000000000	00

QUANTUM CHROMODYNAMICS (QCD)

- Quantum field theory of the strong interaction binding quarks and gluons forming hadrons.
- The only experimentally realised strongly-interacting quantum field theory highlights many subtleties.
- A paradigm for strongly-interacting theories in BSM physics and elsewhere.
- Many puzzles and challenges remain in this well-studied arena.

NTRODUCTION	LATTICE QCD	Heavy quark phenomenology	Results	Summary
0000000	0000000	00000	000000000000	00

QUANTUM CHROMODYNAMICS (QCD)

- Quantum field theory of the strong interaction binding quarks and gluons forming hadrons.
- The only experimentally realised strongly-interacting quantum field theory highlights many subtleties.
- A paradigm for strongly-interacting theories in BSM physics and elsewhere.
- Many puzzles and challenges remain in this well-studied arena.

1 Guy Guy + 5 8; (18 m) where $G_{\mu\nu}^{\alpha} \equiv \partial_{\mu} \Pi_{\nu}^{\alpha} - \partial_{\nu} \Pi_{\mu}^{\alpha} + i f_{\mu}^{\alpha} \Pi_{\mu}^{\beta} \Pi_{\mu}^{\beta}$ and Da = du + it and That's it !

INTRODUCTION	LATTICE QCD	Heavy quark phenomenology	Results	Summary
00000000	0000000	00000	000000000000	00

QCD: A CONCEPTUALLY RICH $\overset{\circ}{\mathcal{O}}$ practically powerful QFT

- Explains nature's strong interactions in terms of fundamental variables: quarks and gluons.
- A theory rich with symmetries!

 $SU(3)_C \times SU(3)_L \times SU(3)_R \times U(1)_A \times U(1)_B$

- Gauge "color" symmetry; Global chiral symmetry; Baryon number and axial charge (m=0) conservation. Scale invariance and discrete C, P, T symmetries.
- Gluons (force carriers) are charged under the strong interaction: very different to QED
- Quantum effects \longrightarrow breaking of symmetries \longrightarrow visible matter.
- Inherent properties of this relativistic field theory: confinement, asymptotic freedom, anomalies, SSB depend on non-linear dynamics in QCD

DYNAMICAL MASS GENERATION THROUGH NON-LINEAR INTERACTIONS

Nothing to do with Higgs!

Massless gluons and almost massless quarks interact - generating most of the mass of nucleons Proton: uud

• $m_u = 2.3 \frac{+0.7}{-0.5} \text{ MeV}/c^2$

•
$$m_d = 4.8 \frac{+0.7}{-0.3} \text{ MeV}/c^2$$

• $m_P = 938.3 \text{ MeV}/c^2$

- Only 1% of the proton's mass comes from the constituent quarks' intrinsic masses.
- The proton is an emergent (long-range) phenomena resulting from the collective behaviour of quarks and gluons QCD.

INTRODUCTION	LATTICE QCD	Heavy quark phenomenology	Results	Summary
00000000	0000000	00000	000000000000	00
				1
				/

THE SECRET LIFE OF PROTONS

- A proton is composed of quarks, bound together by gluons
- QCD is the mathematical framework describing how these constituents interact.
- Confinement is purely quantum phenomenom and not yet understood

INTRODUCTION	LATTICE QCD	Heavy quark phenomenology	Results	Summary
0000000	0000000	00000	000000000000	00

A TALE OF TWO REGIMES

Low Energy

- High Energy
 - asymptotic freedom, perturbative
 - degrees of freedom: quarks & gluons
- nonperturbative, $\Lambda_{QCD} \sim 300 MeV = O(1 fm^{-1})$
- color confinement, degrees of freedom: mesons & baryons

Theory of quarks & gluons \longrightarrow low-energy hadron spectrum

Why Lattice QCD?

- A systematically-improvable non-perturbative formulation of QCD
 - Well-defined theory with the lattice a UV regulator
- Arbitrary precision is in principle possible
 - conceptual and practical complications can make this challenging!
- Facilitates numerical simulation
 - MCMC approach drawing from methods in statistical physics systems
- Starts from first principles i.e. from the QCD Lagrangian
 - inputs are quark mass(es) and the coupling can explore mass dependence and coupling dependence.

Practicalities of a lattice calculation for spectroscopy

INTRODUCTION	LATTICE QCD	HEAVY QUARK PHENOMENOLOGY	Results	Summary
0000000	0000000	00000	000000000000	00

A lattice QCD primer

Start from the QCD Lagrangian:

$$\mathcal{L} = \bar{\psi} \left(i \gamma^{\mu} D_{\mu} - m \right) \psi - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu}_{a}$$

- Gluon fields are SU(3) matrices links of a hypercube. $A_{\mu}(x) \rightarrow U_{\mu}(x) = \mathcal{P}e^{ig \int_{x}^{x+e_{\mu}} dz_{\mu}A_{\mu}(z)}$
- Quark fields $\psi(x)$ on sites with color, flavor, Dirac indices. Fermion discretisation - Wilson, Staggered, Overlap, ...
- Derivatives \rightarrow finite differences: $\nabla_{\mu}^{\text{fwd}}\psi(x) = \frac{1}{a} \left[U_{\mu}(x)\psi(x+a\hat{\mu}) - \psi(x) \right]$

Lattice acts as UV and IR regulator:

- typical spacing: $0.04 \text{fm} \le a \le 0.2 \text{fm}$ (1GeV $\le a^{-1} \le 5 \text{Gev}$)
- typical length: $2 \text{fm} \leq L \leq 6 \text{fm}$.
- (UV) $am_q \ll 1$; (IR) $M_{\pi}L \ge 4$

INTRODUCTION	LATTICE QCD	Heavy quark phenomenology	Results	Summary
0000000	0000000	00000	000000000000	00

• Solve the QCD path integral on a finite lattice with spacing $a \neq 0$ with Monte Carlo in a Euclidean space-time metric (no useful importance sampling weight in Minkowski space).

Observables determined from (Euclidean) path integrals of the QCD action

$$\langle \mathcal{O} \rangle = 1/Z \int \mathcal{D} U \mathcal{D} \bar{\psi} \mathcal{D} \psi \mathcal{O}[U, \bar{\psi}, \psi] e^{-S[U, \bar{\psi}, \psi]}$$

• In principle the finite temporal extent implies a finite temperature e.g

$$S_f[\bar{\psi},\psi,A_{\mu}] = \int_0^{1/T} d\tau \int_V d^3x \sum_f \bar{\psi}_f(x) \left(\gamma_{\mu} D_{\mu} + m_f\right) \psi_f(x)$$

• Change the temporal extent to change $T = 1/aN_t$

Introduction	LATTICE QCD	Heavy quark phenomenology	Results	Summary
0000000	00000000	00000	000000000000	00

Correlators in Lattice Euclidean Field Theory

• Physical observables $\mathcal O$ are determined from

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D} U \mathcal{D} \Psi \mathcal{D} \bar{\Psi} \mathcal{O} e^{-S_{QCD}}$$

• Analytically integrate Grassman fields $(\Psi, \overline{\Psi}) \rightarrow$

$$\langle \mathcal{O} \rangle \stackrel{N_f=2}{=} \frac{1}{Z} \int \mathcal{D}U \det M^2 \mathcal{O}e^{-S_G}$$

Calculated by importance sampling of gauge fields and averaging over ensembles.

• Simulate N_{cfg} samples of the field configuration, then

$$\langle \mathcal{O} \rangle = \lim_{N_{cfg} \to \infty} \frac{1}{N_{cfg}} \sum_{i=1}^{N_{cfg}} \mathcal{O}_i[U_i]$$

- Correlation functions have a (improvable!) statistically uncertainty ~ $1/\sqrt{N_{cfg}}$.
- det *M* swapped for M^{-1} , also required in correlation functions. Can take > 80% of compute cycles in configuration generation. det M = 1: quenched approximation.

INTRODUCTION	LATTICE QCD	Heavy quark phenomenology	Results	Summary
0000000	00000000	00000	000000000000	00

A RECIPE FOR (MESON) SPECTROSCOPY

- Construct a basis of local and non-local operators Ψ(x)ΓD_iD_j...Ψ(x) e.g. from distilled fields [Peardon, PRD80 (2009) 054506].
- Build a correlation matrix of two-point functions

$$C_{ij} = \langle 0 | \mathcal{O}_i \mathcal{O}_j^{\dagger} | 0 \rangle = \sum_n \frac{Z_i^n Z_j^{n\dagger}}{2E_n} e^{-E_n t}$$

- Ground state mass from fits to $e^{-E_n t}$
- Beyond ground state: Solve generalised eigenvalue problem $C_{ij}(t)v_j^{(n)} = \lambda^{(n)}(t)C_{ij}(t_0)v_j^{(n)}$
- eigenvalues: $\lambda^{(n)}(t) \sim e^{-E_n t} \left[1 + O(e^{-\Delta E t}) \right]$ principal correlator
- eigenvectors: related to overlaps $Z_i^{(n)} = \sqrt{2E_n} e^{E_n t_0/2} v_j^{(n)\dagger} C_{ji}(t_0)$

• Results shown here for anisotropic lattices $a_t \ll a_s$.

INTRODUCTION	LATTICE QCD	HEAVY QUARK PHENOMENOLOGY	Results	Summary
0000000	00000000	00000	000000000000	00

THE COMPROMISES AND CONSEQUENCES

1. Working in a finite box at finite grid spacing

• Recover continuum QCD by extrapolation. Part of the error budget.

2. Simulating at physical quark masses

• Computational and complexity cost of physical light and heavy quarks. Physical light & heavy quarks in reach. Mass dependence is a tool!

3. Breaking symmetry

Lorentz symmetry broken at a ≠ 0: SO(4) rotation group to rotation group of a hypercube.

O(3)

Identify states according to this symmetry.

4. Euclidean time

• Access energies via $C(t) \sim e^{-E_n t}$. Direct access to scattering matrix elements lost. Lüscher formalism and generalisations allow indirect access via finite volume.

lattice

Oh

Computing Lattice QCD

1. Ensemble generation

Markov Chain Monte Carlo \rightarrow ensembles of gauge fields according to the QCD path integral. Stored/reused.

2. Quark Propagation

Solve Mx = b for each spin, colour. *M* the Dirac matrix, *b* the source for quark propagator.

3. Contracting quark fields

Quark propagators contracted with operators to produce desired quantum numbers \rightarrow correlation functions.

4. Data analysis

Physics (energies, form factors, etc) from correlation functions.

QCD & heavy quark phenomenology

INTRODUCTION	LATTICE QCD	HEAVY QUARK PHENOMENOLOGY	Results	Summary
0000000	0000000	0000	0000000000000	00

The fate of strongly interacting matter

- Lattice QCD explores the temperature axis
 - EoS known in continuum limit, physical quark masses.
 - Hadron spectroscopy challenges: T>0 solving an inverse problem. T=0 extracting precision resonance parameters
 - Expensive: high statistics (many operators, temperatures needed).
- Finite density is fundamentally harder no MC approach.

INTRODUCTION	LATTICE QCD	HEAVY QUARK PHENOMENOLOGY	RESULTS	Summary
0000000	0000000	00000	000000000000	00

QUARKONIA - BOUND STATES OF HEAVY QUARKS

What is it?

Flavourless mesons built from a heavy quark (m_c ~ 1.3GeV or m_b ~ 4.7GeV) and its own antiquark: Charmonium (cc̄) and Bottomonium (bb̄). [No toponium due to the short lifetime of the top quark]

Some properties:

- Stable under strong decay while
 - Charmonium: $M_{c\bar{c}} < 2M_D \sim 2 * 1.9 GeV$ for $D = c\bar{u}$
 - Bottomonium: $M_{b\bar{b}} < 2M_B \sim 2 * 5.3 GeV$ for $B = b\bar{u}$

Includes η_c , J/Ψ , Υ , η_b , $\chi_{b0,b1,b2}$, ground state S and P waves.

- Many useful symmetries e.g. spin and flavour.
- A fertile hunting ground for strong exotic matter.

Theoretical calculations:

- Potential models, sum rules, Lattice...
- Lattice methods now very precise cf HadSpec Collaboration
- b-quarks well-suited to effective field theory methods on the lattice HQET, NRQCD.

Introduction	Lattice QCD	Heavy quark phenomenology	Results	Summary
00000000	00000000	000000	0000000000000	OO

QCD ADMITS A RICH AND EXOTIC SPECTRUM

Includes *J^{PC}* not accommodated in quark models.

Introduction	LATTICE QCD	HEAVY QUARK PHENOMENOLOGY	Results	Summary
0000000	0000000	00000	000000000000	00

Experimental data: challenges in heavy quark spectroscopy

т

450 MeV

240 MeV

200 MeV

Zero temperature understanding strong *exotic* matter

Finite temperature melting & suppression to probe the QGP

$T \sim 0$

INTRODUCTION	LATTICE QCD	Heavy quark phenomenology	Results	Summary
00000000	0000000	00000	000000000000	00

FIRST STEP: UNDERSTAND THE SPECTRUM

Precision calculation of high spin ($J \ge 2$) and exotic charmonium states

part of G-wave **Exotics** 1500 F-wave D-wave 1000 $D_{i}\overline{D}_{i}$ $M-M_{\eta_e}$ (MeV) P-wave $D\overline{D}$ 500 $\eta_c J/\psi$ χ_{c0} h_c χ_{c1} χ_{c2} $I = I \otimes S$ S-wave HSC 2012 [1204.5425]

XYZs are at/above (many) thresholds a huge challenge ...

Caveat Emptor

- Large basis of single-hadron (only) operators
- Physics of multi-hadron states appears to need relevant operators
- No continuum extrapolation
- Heavy pions (400 MeV). Also now with $m_{\pi} \sim 236$ MeV.

Charmonium

Introduction	LATTICE QCD	HEAVY QUARK PHENOMENOLOGY	Results	Summary
0000000	0000000	00000	000000000000	00

THE SAME TECHNIQUES APPLIED TO B QUARKS - AN EXPLORATORY STUDY

First determination of the excited and exotic bottomonium spectrum

Bottomonium

Lightest hybrid supermultiplets^[HadSpec:2008.02656]: same pattern and scale also seen in open charm and light^[HadSpec:1106.5515] sectors.

INTRODUCTION	LATTICE QCD	Heavy quark phenomenology	Results	Summary
0000000	0000000	00000	000000000000	00

BEYOND SIMPLE BOUND STATES: RESONANCES IN A EUCLIDEAN THEORY

The problem: Lose direct access to scattering in a Euclidean QFT. **The solution:** On lattice volumes extract the spectrum. Lüscher formalism (1991) allows to deduce phase shift information.

 $\det\left[\cot\delta(E_n^*) + \cot\phi(E_n, \vec{P}, L)\right] = 0$

The more distinct spectrum points the better the phase shift picture

Introduction	LATTICE QCD	HEAVY QUARK PHENOMENOLOGY	Results	Summary
0000000	0000000	00000	000000000000	00

Recent examples - scattering in exotic and non-exotic channels

Introduction	LATTICE QCD	HEAVY QUARK PHENOMENOLOGY	Results	SUMMARY
0000000	0000000	00000	000000000000	00

Recent examples - scattering in exotic and non-exotic channels

T > 0

INTRODUCTION	LATTICE QCD	Heavy quark phenomenology	Results	Summary
0000000	0000000	00000	0000000000000	00

QUARKONIA AT FINITE TEMPERATURE

From correlation functions determine spectral functions: all information on thermal modifications of the spectrum in that channel.

$$C_i(\tau) = \int d\omega K(\tau, \omega) \rho_i(\omega)$$
 and $K(\tau, \omega) = \frac{\cosh\left[\omega\left(\tau - \frac{1}{2T}\right)\right]}{\sinh\left(\omega/2T\right)}$

ρ (a function of the continous energy) from (discrete) *C*: an ill-posed problem.

Maximum Entropy Method (a Bayesian approach) [See ECT* Workshop, Sept 2021]

- Construct ρ that maximises conditional probability P[ρ|DH] of having ρ, given data D and prior H.
- Choice of prior (eg posititivty of *ρ*) defines the method MEM based on Shannon Jaynes entropy, S:

$$P[\rho|DH] = exp(-\frac{1}{2}\chi^2 + \alpha S), \text{ with } S = \int d\omega \left[\rho(\omega) - m(\omega) - \rho(\omega)\log\left(\frac{\rho(\omega)}{m(\omega)}\right)\right]$$

INTRODUCTION	LATTICE QCD	Heavy quark phenomenology	Results	Summary
0000000	0000000	00000	000000000000	00

QUARKONIA AT FINITE TEMPERATURE: MEM & NRQCD

- \mathcal{L}_{nrqcd} ordered in powers of $v = |\mathbf{p}|/m_Q$ and $v^2 \sim 0.1$ for b quarks.
- Propagators solving an initial value problem

$$G(\mathbf{x}, \tau = 0) = S(\mathbf{x}) G(\mathbf{x}, \tau = a_{\tau}) = \left(1 - \frac{H_0}{2n}\right)^n U_4^{\dagger}(\mathbf{x}, 0) \left(1 - \frac{H_0}{2n}\right)^n G(\mathbf{x}, 0).$$

In NRQCD:

• No thermal boundary condition (kinematical temperature dependence) - a simple spectral relation: $G(\tau) = \int_{-2M}^{\infty} \frac{d\omega'}{2\pi} e^{-\omega'\tau} \rho(\omega')$, $(\omega = 2M + \omega')$. Heavy quarks not in thermal equilibrium with light-quark-gluon system but appear as probes.

INTRODUCTION	LATTICE QCD	HEAVY QUARK PHENOMENOLOGY	RESULTS	Summary
0000000	0000000	00000	0000000000000	00

What to expect when quarks are not bound?

Consider free quarks in continuum NRQCD, with $E_p = \frac{P}{2M}$ As an example: S and P wave correlators

Burnier, Laine, Vepsäläinen '08

-

$$C_{S}(\tau) \sim \int d^{3}p \quad exp(-2E_{\mathbf{p}}\tau) \sim \tau^{-3/2} \qquad \qquad \rho_{S}(\omega) \sim \int d^{3}p \quad \delta(\omega - 2E_{\mathbf{p}})$$
$$C_{P}(\tau) \sim \int d^{3}p \quad \mathbf{p}^{2}exp(-2E_{\mathbf{p}}\tau) \sim \tau^{-5/2} \qquad \qquad \rho_{P}(\omega) \sim \int d^{3}p \quad \mathbf{p}^{2}\delta(\omega - 2E_{\mathbf{p}})$$

- Temperature dependence only enters via the medium!
- In the free continuum case power law decay for large euclidean time, au
- Expect modifications from interactions, finite lattice spacing, etc in a realistic case

INTRODUCTION	LATTICE QCD	Heavy quark phenomenology	Results	Summary
0000000	0000000	00000	000000000000000	00

EFFECTIVE MASS: COMPARING S AND P WAVE CORRELATORS

 χ_{b1} : P wave

Significant T dependence. Rules out pure exponential decay at $T \sim 2T_c$

[these and following from 1402.6210 and 1912.09827]

Introduction	LATTICE QCD	Heavy quark phenomenology	RESULTS	Summary
0000000	0000000	00000	000000000000000000000000000000000000000	00

Effective power: Comparing S and P wave correlators

 $\gamma_{\rm eff} = -\tau \frac{G'(\tau)}{G(\tau)} \to \tau$

S waves in detail with MEM: Υ and η_b in the plasma

- η_b ground state survives excited states suppressed
- Υ ground state survives excited states suppressed.
- Similar results from CMS.

Introduction	LATTICE QCD	HEAVY QUARK PHENOMENOLOGY	Results	Summary
0000000	0000000	00000	000000000000	00

P waves in detail from MEM: χ_{b1} in the plasma

- Other χ_b states similar.
- Structure of spectral functions from NRQCD similar to $\rho_{Pwave}^{free, lat}(\omega)$.
- Clear indications of melting immediately above T_c and of unbound, quasi-free b quarks.

Introduction	Lattice QCD	Heavy quark phenomenology	Results	Summary
00000000	00000000		00000000000000	●O
		PR	WELCOME TO ROGRESS NUT THE JOURNEY	

Summary & Outlook

- A renaissance in lattice heavy quark spectroscopy mapping the spectrum of excited and exotic states, tackling resonances (only briefly discussed) and probing the QGP.
- Full scattering "machinery" honed in light sector, now to be applied for XYZs.
- EFTs (e.g. NRQCD) can play a crucial role, including at finite T.
- Full error budgets for resonances and for T>0 still to come.
- Many open questions and little dialogue to date between the T=0 and T>0 communities, lots of interesting avenues ...
 - Distillation & variational analysis at finite temperature for unstable states, transport?
 - Melting and suppression may yield information on structure of exotic states?

Many challenges remain ...

Introduction 00000000	Lattice QCD 00000000	Heavy quark phenomenology 00000	Results 0000000000000	Summary O

Perspectives

Classical computing

- Exascale computing within 5 years:
 - Not business as usual: significant algorithm development needed eg in numerical matrix inversion and determinant methods.
 - Look forward to simulations with all(?) uncertainties under control: physical quark masses, discretisation, volume.
 - A new era for precision determinations of SM and BSM phenomenology
 - Exploiting ML/DL convergence with HPC for parameter scans & tuning, taming inverse problems ...
- Some old problems likely remain: for $\mu \neq 0$ solving a sign problem

Quantum computing

- Sign problem, determinants?
- Is a likely model a quantum accelerator in a modular system. How can we exploit this?

Introduction 00000000	Lattice QCD 00000000	Heavy quark phenomenology 00000	Results 0000000000000	Summary O

Perspectives

Classical computing

- Exascale computing within 5 years:
 - Not business as usual: significant algorithm development needed eg in numerical matrix inversion and determinant methods.
 - Look forward to simulations with all(?) uncertainties under control: physical quark masses, discretisation, volume.
 - A new era for precision determinations of SM and BSM phenomenology
 - Exploiting ML/DL convergence with HPC for parameter scans & tuning, taming inverse problems ...
- Some old problems likely remain: for $\mu \neq 0$ solving a sign problem

Quantum computing

- Sign problem, determinants?
- Is a likely model a quantum accelerator in a modular system. How can we exploit this?

Many challenges remain ...

... Thanks for listening!