Broken Lines Trajectory Following Kalman Residuals

Gero Flucke

Hamburg Alignment Meeting August 17th, 2010

Outline

- Motivation
- Constructing the Trajectory
- χ^2 Comparison with Kalman

Reminder on Broken Lines

- Parameters p:
 - offsets in curvilinear frame of each hit measurement,
 - q/p (or 9 parameters for TwoBodyDecayTrajectory).
- Measurements and uncertainties:
 - hit residuals,
 - multiple scattering kinks.
- The fit needs derivatives of the (current) prediction with respect to the parameters.

Motivation

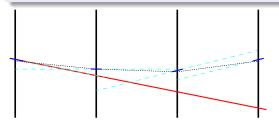
- Hit
- Real Trajectory with Multiple Scattering
- ReferenceTrajectory: Extrapolation from First Layer
- Real particle trajectory subject to multiple scattering.
- Current ReferenceTrajectory implementation simply extrapolates from prediction at first layer (with deterministic energy loss), i.e. measured kinks transferred to pede are all zero.
- Can lead to large residuals r.
- Problems (how large?):
 - Broken line track fit assumes small $r \ll path length s$ [?]s).
 - Magnetic field effects sampled along wrong path.

Idea

Construct ReferenceTrajectory from

- Kalman hit residuals,
- multiple scattering angles as measured by Kalman fit.

Note


- Smoothed Kalman fit predicts trajectory state T = (q/p, dx/dz, dy/dz, x, y) on each layer (local coordinates).
- Fit includes
 - effect of thin scatterers $(\Delta(dx/dz), \Delta(dy/dz))$,
 - energy loss $(\Delta q/p)$.

Surprises...

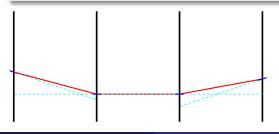
...due to bad understanding of Kalman fit procedure

- Extrapolation to next layer gives offsets $\Delta x \neq 0$ and $\Delta y \neq 0$ (like for thick scatterer).
- Sometimes energy gain, not loss (although $\langle p_{i+1} p_i \rangle < 0$).

Explanation

(Thanks Sascha!)

Although "process noise" comes from thin scatterer and *E* loss, **all five** trajectory parameters are updated.


- Kalman Predictions on Layers
- their Extrapolations
- Real Trajectory with Multiple Scattering
- ReferenceTrajectory: Extrapolation from First Kalman Prediction

Modified Approach

Broken lines fit for thin scatterers does not tolerate offsets: multiple scattering leads to kinks only.

Manipulate Kalman Predictions

- Hit residuals from pure Kalman predictions (refinement later).
- Multiple scattering kinks by
 - finding change of local direction
 - that makes the extrapolation
 - match Kalman position prediction at next layer.
- Before extrapolation adjust q/p according to energy loss in current layer (deterministically).

- Kalman Predictions on Layers
- their Extrapolations
- Trajectory Following Kalman Position
 Predictions

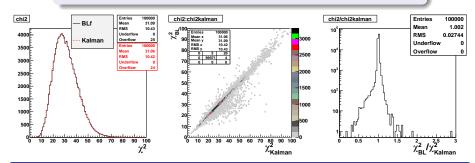
Implementation Details

Manipulate Kalman Predictions

- Use "updated" TrajectoryStates, i.e. smoothed Kalman results.
- Extrapolations with RungeKutta propagator.
- Kink angles $\Delta(da/dz)$ calculated (iteratively) by solving

$$\begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}_{next} = J \cdot \begin{pmatrix} \Delta (dx/dz) \\ \Delta (dy/dz) \end{pmatrix}_{current},$$

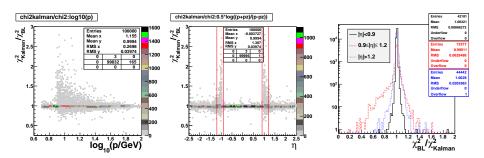
$$J \text{ sub-matrix of } \frac{\partial T_{next}}{\partial u_{next}} \cdot \frac{\partial u_{next}}{\partial u_{current}} \cdot \frac{\partial u_{current}}{\partial T_{current}},$$


 $\frac{\partial u_{next}}{\partial u_{current}}$ from AnalyticalCurvilinearJacobian u_i state in curvilinear frame at layer i.

- Stop iteration if $(\Delta x)^2 + (\Delta y)^2 < 0.02 \ \mu m^2$.
- To get rid of inaccuracies below this level, calculate residuals with respect to the extrapolated state (should be done even if iteration does not converge - so far these few tracks are rejected?).
- No energy loss update going from first to second layer.

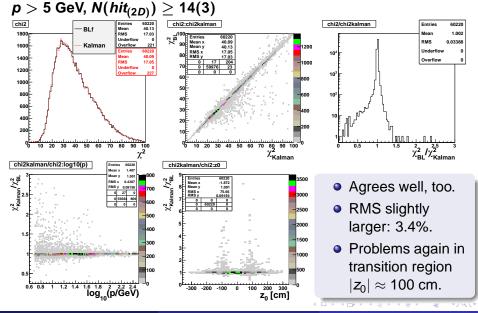
Results: χ^2 Comparison

Kalman Fit vs BL Refit (in pede)


- Feed local *y*-residuals to pede for same *N*(*dof*).
- Simulated isolated muons:
 - TkAllsolatedMuon_Pt5
 - $p_t > 5$ GeV, $N(hit_{(2D)}) \ge 10(3)$.

Kalman χ^2 Reproduced

• $\langle \chi^2_{BI} / \chi^2_{Kalman} \rangle$ off by only 2 per mille, RMS 2.7%.


χ^2 Comparison vs. $oldsymbol{p_t},\,\eta$

- Largest differences for $0.9 < |\eta| < 1.2$, i.e. transition from region barrel to endcap.
 - For $\log_{10}(p/\text{GeV}) < 0.89$, i.e. p < 7.8 GeV: $|\eta| < 1$ in test sample.
- Assumption of thin scatterer probably not correct?
- Hardly see differences compared to current implementation.
 - Should compare for lower momenta.

Fresh Results for Cosmics

Summary

- Current BrokenLines trajectory may not be perfect for low momenta.
- New approach constructs trajectory
 - following Kalman position predictions,
 - calculating scattering angles by enforcing vanishing multiple scattering offsets
 - and with deterministic energy loss treatment (like current implementation).
- Tested on isolated muons and cosmics,
 - generally good χ^2 agreement, i.e. $\chi^2_{Bl}/\chi^2_{Kalman}$ with RMS = 2.7(3.4)% for isolated muons (cosmics)
 - largest RMS in transition region from barrel to endcap,
 - pretty similar for current trajectory.

Outlook

- Investigate cases that do not converge when finding kinks.
 - Accepting $\Delta x/y$ up to few μ m gives still good χ^2 match.
- Test on samples with lower momenta.
- More detailed comparison with current implementation.
- Including MC alignment test.
- Extend to coarse BrokenLines.
- Provide CMSSW implementation:
 - keep current implementation configurable?
 - time scale?