Using realistic fields from Chi3D in GENESIS 1.3

Towards Start-to-End simulations

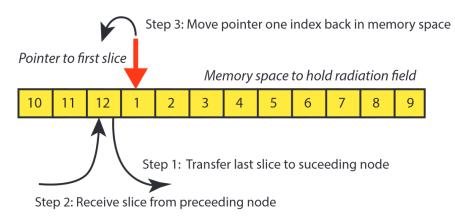
Sven Ackermann Hamburg, December 16th, 2021

GENESIS1.3, version 4

A short reminder

- GENESIS1.3 is the name of the code. For convenience, one refers to the code by Genesis or G4.
- Time dependent
- 3D
- Undulator-period averaged (UPA)
- Uses MKS system
- Coordinate system is based on slices
- Version 4 finally implements:
 - HPC compatibility: Runs smoothly on Maxwell, Jules, ...
 - Uses HDF5 instead of propietary binary file format
 - "Single electron" mode uses one simulation particle per electron ("one4one")
 - Easier input formats (especially lattice- and simualtion configuration)

Sliced approach


Electron beam and justification

- In Genesis, the electron bunch consists of slices
- Each slice is one radiation wavelength λ_{Rad} long
- The position of particles inside a slide N_{Slice} is given by its ponderomotive phase Θ
- $z = \left(\frac{\Theta \pi}{2\pi} + N_{\text{Slice}}\right) \cdot \lambda_{\text{Rad}}$

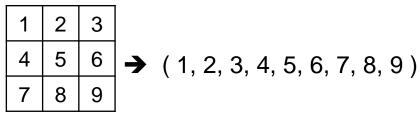
Sliced approach

Why (it is elegant!)

- Due to the UPA approach, this is very elegant
 - The slippage is one radiation wavelength per undulator period
 - One only has to reduce N_{Slice} by one \rightarrow Realized by moving the pointer to the memory address
 - Radiation field is considered being at a fixed position in time
- Particles with $(\Theta \approx 0) \vee (\Theta \approx 2\pi)$ are transferred to next slice (in one4one mode)
 - Needed for the oversheering in the EEGH scheme
 - In former versions, electron with such phase would stay in the slice, like ~ $\Theta_{\text{new}} = \text{mod}(\Theta_{\text{old}}, 2\pi)$
- This reduces a lot of overhead time for moving data between memory addresses

Sven Reiche: *Update on the FEL code GENESIS1.3* in: Proceedings of FEL2014, Basel, Switzerland (TUP019)

Sliced approach

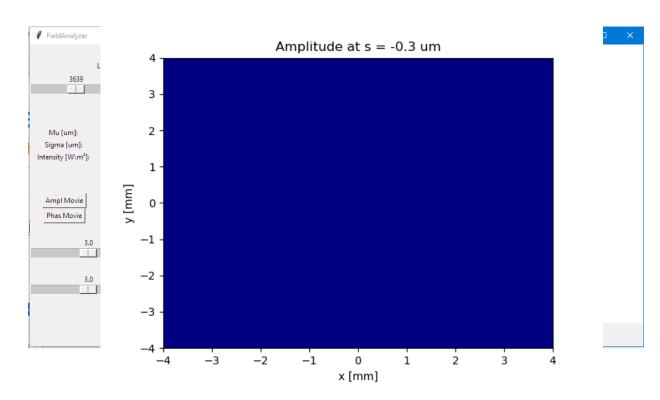

Photon field

- The photon field is calculated with the same longitudinal granulosity
- UPA approach \rightarrow Field is averaged over one period
- The simulation takes place on a rectangular grid defined by
 - Grid size
 - Number of grid points (best practise: Odd number to have a center gridpoint)
- Each gridpoint contains the complex field amplitude
- Units are W and $\frac{W}{m^2}$

File format

HDF5 file for the radiation field

- The HDF5 file contains metadata
 - Gridpoints
 - Gridsize
 - Number of slices
 - Radiation wavelength
- And real data, organized in groups
 - \slice000001
 - field-imag $(\Im(E))$
 - field-real $(\Re(E))$
- The data is stored in 1D lists



PF HDFView 3.0				
File Window Tools Help				
z 🗂 🔌 🖪 🗓				
Recent Files D:\Example.fld.h5				
- 🗓 Example.fld.h5	Object Attrib	ute Info	General Object	t Inf
m gridpoints				
m gridsize	Number of attributes = 0			
main refposition	Name	Tuna	Arroy Siza	14
 Slice000001 State in a state 	Name	туре	Array Size	Va
簡 field-imag				
⇒ Cu slice000002				
> 🖕 slice000003				
field-imag at /slice000240/ [Example.fld.h5 ir	n D:\]			
ble Import/Export Data Data Display				
<u>M</u>				
0-based				
12553, = -1.92567397188330	101			
12545-1.0492862056358587			-	
12546-1.1558457072320374			_	
12540-1.1000407072320374			_	
			_	
12548-0.9778304719924975			_	
12549-1.1125121394335937			_	
12550-1.3641097906412516			_	
12551-1.5957443035556629			_	
12552-1.83114273905867				
12553-1.9256739718833051				
12554-1.853032324877266			_	
12555-1.8879804028067744			_	
10EE0 0.0000071E007107E				

File analysis

- A slice-wise viewer has been developed (Field.py)
- It is, together with all other tools, available publicly (without any guarantee) at

https://www.desy.de/~ackerm/G4-Tools/

Filename	D:/rad.fld.h5
Gridpoints	301
Gridsize	3.333333333333333333e-06
Ref.position	0.0
No. of slices	21952
Slicespacing	7e-09
Wavelength	7e-09

Conversion

- Thanks to HDF5 standard, little to no effort has to be taken into the mechanics storing data
- Arrange it in the way Genesis "expects" the data
- Luckily, Genesis accepts additional fields → Field properties and additional information can be stored
- To test the conversion, the procedure is the following:
 - Generate field using Chi²
 - Convert the field towards Genesis field file in HDF5 format
 - Use that field file in a zero-length simulation and have Genesis save a field file
 - Compare the file after the simulation and the one before conversion
 - If they match, the conversion was done correctly

```
%HDF5 conversion
clc
name = fullfile('results',['chi3D_',datestr(now,'yymmdd_hhMMss'),'.h5']);%
mkdir('results')
```

```
h5create(name,'/gridpoints',1);%'Datatype','single'
h5write(name,'/gridpoints',gridpoints)
```

```
h5create(name,'/gridsize',1);
h5write(name,'/gridsize',obj.constVars.dx); %the exact gridsize in defined by the conversion process
```

h5create(name,'/refposition',1); h5write(name,'/refposition',refposition)

h5create(name,'/slicecount',1); h5write(name,'/slicecount',N_slices)

```
h5create(name,'/wavelength',1);
h5write(name,'/wavelength',obj.constVars.dt*3e8); %due to convertion the defined center wavelength can differ slight
```

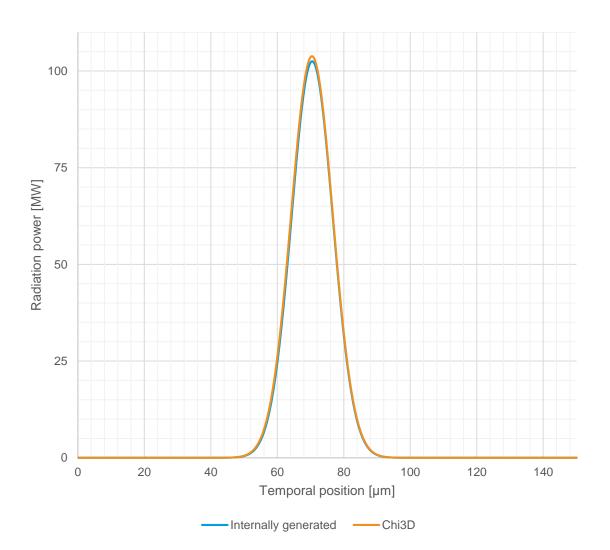
h5create(name,'/slicespacing',1);% h5write(name,'/slicespacing',obj.constVars.dt*3e8) %the exact slicespacing in defined by the conversion process

```
f = waitbar(0,'convert chi3D to HDF5...');
for i=1:N_slices
```

```
waitbar(i/N_slices,f,'convert chi3D to HDF5...');
```

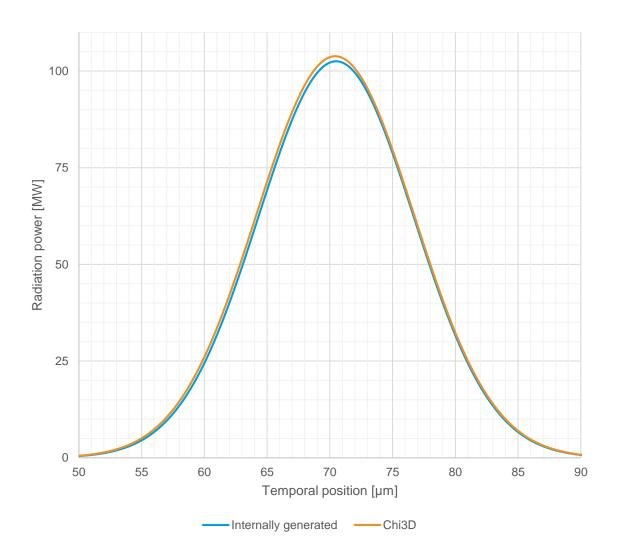
```
N=gridpoints^2;
Exy_i = gather(squeeze(Etxy(i,:,:)));
```

```
h5create(name,['/slice',num2str(i,'%06i'),'/field-imag'],N);
h5create(name,['/slice',num2str(i,'%06i'),'/field-real'],N);
```


```
h5write(name,['/slice',num2str(i,'%06i'),'/field-imag'],imag(Exy_i(:))');
h5write(name,['/slice',num2str(i,'%06i'),'/field-real'],real(Exy_i(:))')
end
```

pulseProperties = fields(obj.simResults.UV); for i=1:length(pulseProperties) h5create(name,['/pulseProperties/',pulseProperties{i}],1); h5write(name,['/pulseProperties/',pulseProperties{i}],obj.simResults.UV.(pulseProperties{i})) end

```
waitbar(1,f,'done');
% h5disp(name)
```


Current state

- Comparison between internal generation and Chi3D
- First successful run yesterday:
 - Peak power: 102,51 MW
 - Center at 70.5 µm
 - Sigma at 6.2 µm
- Still some small deviation, but <1%

Current state

- Comparison between internal generation and Chi3D
- First successful run yesterday:
 - Peak power: 102,51 MW
 - Center at 70.5 µm
 - Sigma at 6.2 µm
- Still some small deviation, but <1%

Conclusion

- We have powerful tools
 - Chi3D for photon fields
 - GENESIS for the FEL process
- We can user our code to transfer fields between them
- Not everything is perfect (yet)
- First real simulations can now start using realistic laser beam profiles
- → Thanks to everyone who contributed to the process (especially Tino, Eugenio, Fabian)

Contact

DESY. DeutschesSven AckermannElektronen-SynchrotronFS-FLASHsven.ackermann@desy.de

+49 (0)40 8998-6239

www.desy.de