First results of ELEGANT simulations for the laser heater

Dmitrii Samoilenko Hamburg, 16.12.2021

Overview

- Concept of the Laser Heater >
- Simulation details >
- > First results
- > Application of the results

Concept: Motivation

Ref: Brynes, A.D., Akkermans, I., Allaria, E. et al. Characterisation of microbunching instability with 2D Fourier analysis. Sci Rep 10, 5059 (2020).

https://doi.org/10.1038/s41598-020-61764-y

Concept: Layout

Ref: C. Gerth et al., "Layout of the Laser Heater for FLASH2020+", in Proc. 12th Int. Particle Accelerator Conf. (IPAC'21), Campinas, Brazil, May 2021, pp. 1647-1650.

Simulations: parameters

Gaussian bunch (1mm rms, 0.4nC) is generated by ELEGANT, propagated through ACC1 and ACC39

Central energy	Slice Energy Spread	Beam size rms
146 MeV	3 keV	316 µm

UND period	# of periods	B (K)
43 mm	11	0.356 T (1.43)

Laser wavelength	Max peak power	Waist size	Pulse length rms
532 nm	2 MW	316 µm	3.3 ps*

Concept: Working point

- > To suppress µB: 10-20 keV induced energy spread by the LH
- > Total energy spread grows especially in bunch compressors (×4 in each)
- > For FEL operation: below 150 keV after linac

Example: total energy spread σ_E after the LH consist of total energy spread before it σ_{init} and induced modulation $\Delta \gamma \approx 10-20$ keV:

$$\sigma_E = \sqrt{\sigma_{init}^2 + \frac{\Delta\gamma^2}{2}}$$

To have $\sigma_E = 150$ keV after BC2, we should have $\sigma_E = \frac{150 \text{keV}}{16} \approx 9.5 \text{keV}$ after LH. Then,

$$9.5$$
keV = $\sqrt{(3$ keV $)^2 + \frac{\Delta\gamma^2}{2}}$, $\Delta\gamma = 12.6$ keV

DESY. | First results of ELEGANT simulations for the laser heater | Driftrii Samoilenko | Hamburg, 16:12.2021

Simulation: Results

Simulation: Results

Simulation: Results

Conclusion

Calibration curves are helpful because:

- > no device to measure energy spread right after the LH \rightarrow we need to know how energy spread evolves
- > Will the TDS have enough resolution for a good measurement? \rightarrow If not, measurements may have to be made with total energy spread higher than operation mode

Once the working point is chosen we can include LH in S2E simulation

Thank you!

Contact

DESY. Deutsches Elektronen-Synchrotron MPY Dmitrii Samoilenko dmitrii.samoilenko@desy.de

www.desy.de

DESY. | First results of ELEGANT simulations for the laser heater | Dmitrii Samoilenko | Hamburg, 16.12.2021

