End Simulation Workshop

Wellcome to the 2nd Day of FLASH2020+ Start to

11:00	10 - Introduction to Puffin
	DEST
	11 - Setting up ELEGANT lattice for S2E simulations
	DESY
12:00	13 - Bridging Elegant to Genesis simulations with a pseudo-one4one
	DESY
	Short Coffee Break
	14 - EEHG Working Points in GENESIS and ELEGANT"
13:00	DESY
	15 - Summary
	16 - Final Disscussion
	DESY
14:00	

	Dr Pardis Niknejadi
	11:00 - 11:30
	Dmitrii Samoilenko
	11:30 - 12:00 💉
oproach	Mihai Pop
	12:00 - 12:30 📈
	li.
	Fabian Pannek et al.
	12:45 - 13:15
	Dr Pardis Niknejadi 🐊
	12.20 14.00

FLASH2020-

FLASH2020+ Start to End Simulation Workshop

Introduction to Puffin

Pardis Niknejadi On behalf of FLASH2020+ team Hamburg, 17.12.2021

About Puffin

New code on the block SVES vs. PIC How to run

Technical comparison between Puffin and Genesis 1.3 V4

General Seeding specific

Seeding simulations in Puffin

With in the S2E framework Status and Prerequisites

DESY. | FLASH2020+ S2E Simulation Workshop | Introduction to Puffin | P. Niknejadi, 17.12.2021

About Puffin New code on the block

Puffin: Parallel Unaveraged Fel Integrator (L.T. Campbell & B.W.J. McNeil)

- Is the first Unaveraged Free Electron Laser (FEL) code available in 3D \bullet
 - For first 1D see C. Maroli, V. Petrillo & M. Ferrario in Review of Modern Physics 14, 7 (2011) \bullet
- Has at least two versions
- Uses a PIC approach instead of SVEA \bullet
- Written in Fortran 90 using MPI
- Models a variably polarised undulator FEL
- Intended for \bullet
 - short electron pulses which may exhibit a large degree of coherent emission (Laser Plasma Accelerator), \bullet
 - electron pulses with large changes in the relative electron positions \bullet

Sources: Talk by L.T. Campbell (2012), Physics of Plasma 19, 093119 (2012) Puffin Manual and IPAC2018 contribution

About Puffin SVES vs. PIC

Slowly Varying Envelope Approximation (SVEA), and use averaged quantities to drive field

To simulate relative electron-radiation 'slippage,' pass field on to next slice

About Puffin SVES vs. PIC

Slowly Varying Envelope Approximation (SVEA), and use averaged quantities to drive field

To simulate relative electron-radiation 'slippage,' pass field on to next slice

About Puffin SVES vs. PIC

Slowly Varying Envelope Approximation (SVEA), and use averaged quantities to drive field

To simulate relative electron-radiation 'slippage,' pass field on to next slice

In an unaveraged (PIC) code: the radiation field envelope can vary quickly and the full radiation spectrum is modeled self consistently (limited by the Nyquist frequency)

Electrons are not confined to slices:

- An electron beam is Sampled with a gaussian current distribution
- Then a grid is created
- Into each grid element a macroparticle with charge weight determined by the current distribution is assigned
- Random Poisson deviation is assigned to each macroparticle charge weight & position to simulate noise
- Then a Fourier field solver is used

About Puffin Field solver

The Field is solved with split step Fourier method:

- 1st half step: Field diffraction solved with Fourier Transforms

• 2nd half step: Field source (amplification and absorption by electron macroparticles) and electron propagation

- Electron beam has to be matched to undulator and is confined to the center nodes
- The outer nodes are only use for diffraction (if these cause unrealistic effects they can be filtered)
- electron macroparticles are interpolated directly onto the field mesh (no external solver is used in the latest version)

Main file (min require): If there is a simple beam and one undulator, every thing can be defined in this file.

&MDATA

qScaled q0neD qFieldEvolve qElectronsEvolve qElectronFieldCoupling = .true. qFocussing qDiffraction qUndEnds = .true. $qFMesh_G = .false.$ beam_file sElectronThreshold **iNumNodesX** iNumNodesY nodesPerLambdar sFModelLengthX sFModelLengthY sFModelLengthZ2 iRedNodesX iRedNodesY sFiltFrac sDiffFrac saw sgamma_r lambda_w zundType seed_file lattFile stepsPerPeriod nPeriods sZ0 iWriteNthSteps iWriteIntNthSteps i0utInfo

= .false. = .false. = .true. = .true. = .false. = .true. = 'xseedechobeam.in' = 0.05 = 100 = 100 = 30 = 0.0033 = 0.0033 = 106.43E - 14= 40 = 40 = 0.3 = 1.0 = 7.049746 = 2641.884 = 0.0826 = 'planepole' = 'seed.in' = 'eehg4nm.latt' = 30 = 30 = 0.0 = 450 = 30 = 3

Lattice file

NOT A FULLY WORKING EXAMPLE

!	*****
!	Undulator – use 'UN'
!	<pre>zundtype_arr, nw, mf, tap</pre>
!	
!	being
!	
!	undulator type,
!	number of periods (intege
!	initial tuning alpha = aw
!	taper d/dz alpha,
!	number of integration ste
!	ux and uy – relative magn
!	kbnx_arr and kbny_arr - b
!	of constant 'strong' focu
!	
U	N 'planepole' 30 1.0
D	R 10
С	H 74.14043583535108 3

DR

10

Lattice elements: UN: undulator, CH: chicane, MO: energy modulation, DR: drift, QU: focusing

```
bers, nperlam, ux_arr, uy_arr, kbnx_arr, kbny_arr
```

er), /aw0,

eps per undulator period (integer), netic field strengths in x and y, respectively betatron wavenumber (k_beta = 2pi / lambda_beta) using channel applied over undulator

0.0 30 0.0 1.0 0.0 0.0

3.521233e-3 2895.967896575498

Beam file

```
&NBLIST
nbeams = 1
dtype = 'simple'
/
&BLIST
sSigmaE = 5.0E-6, 5.0E-6, 13.00E-15, 1.0, 1.0, 2.6E-5
sLenE = 40.0E-6, 40.0E-6, 136.6E-15, 1.0, 1.0, 0.0093
iMPsZ2PerWave = 30
!sQe = 800E-12
Ipk = 500
emitx = 3.61E-11
emity = 3.61E-11
chirp = 0
alphax = 1.251302
alphay = -1.078255
qRndEj_G = .false.
sSigEj_G = 0.4
qMatched_A = .false.
TrLdMeth = 2
nseqparts = 500
!qFixCharge = .false.
```

Seed file

```
&NSLIST
nseeds = 2
dtype = 'simple'
&SLIST
freqf = 0.4167, 0.5
sA0_X = 1.0, 2.0
sA0_Y = 1.0, 2.0
sSigmaF = 5, 5, 5, 5, 1.0E-8, 1.0E-8
qFlatTop = .true., .true.
meanZ2 = 0.0, 45
qRndFj_G = .false., .false.
sSigFj_G = 0.1, 0.1
```


ONLY INCLUDES IDEAL FIELD

Technical comparison between Puffin and Genesis 1.3 V4

General

- Puffin is not limited to the resonant frequency
 - One can have two different seed wavelength in one simulation as long as their wavelength is close (I have not checked the limit of this)
- It has a scaled and unscaled mode (and there is no checking mechanism for the most part)
 - However, there are dumps in SI in addition the the scaled dumps, and one could read these and see if they made sense
- There is not the possibility to add or remove dump flags, dumps of integrated (similar to out file of Genesis) or full dumps can be set periodically
 - If you want full beam dump you also get field dump
 - So even if the simulation could take similar resources as Genesis when output period is set to as long as the space*

Seeding specific

- There is no resorting implemented and "z slices" can not be changed in one simulation
- The chicane model is very simple (appropriate for phase shifter and possibly our small chicane but definitely fails for the over shearing chicane)
- For the time being only ideal seed laser are possible

simulations (where one would get 0 and n dump only), investigatory runs can take up a lot of time, resources, and

Seeding simulations in Puffin With in the S2E framework

FLASH2020+ Start to End Simulations and Categories The Planned structure for S2E simulations and incorporating different categories

DESY. | FLASH2020+ S2E Simulation Workshop | Introduction to Puffin | P. Niknejadi, 17.12.2021

FLASH2020+ Start to End Simulations and Categories Codes for externally seeded FEL simulations

FLASH2020+ Start to End Simulations and Categories Codes for externally seeded FEL simulations

FLASH2020+ Start to End Simulations and Categories Codes for externally seeded FEL simulations

DESY. | FLASH2020+ S2E Simulation Workshop | Introduction to Puffin | P. Niknejadi, 17.12.2021

Seeding simulations in Puffin Status and Prerequisites

• Status

- Output of elegant can be upsampled (Modified script from the UK-FEL) collaboration) and changed to Puffin or Genesis beam format then imported to either simulations
- In Puffin:
 - As an input to a radiator this works fine
 - As an input to the modulator (with laser field added) ->work in progress (Not sure how the seed input is scaled or not)
- Chicane definition will most likely work for the second EEHG chicane
- **Prerequisites**
 - Benchmark only simple simulations
 - Finding another approach to benchmarking S2E

Tentative Conclusions and Outlook

Considering Start to End simulations and Benchmarking

- lacksquarecapabilities to be used for EEHG
- \bullet against what you hear in the later talks today

Outlook:

A lot more time needs to be invested to make S2E in Puffin work ullet

Questions:

Are the simulations done for comparison with FERMI data here available somewhere: ulletB. Garcia et al. COMPARING FEL CODES FOR ADVANCED CONFIGURATIONS, FEL2017, Santa Fe, NM, USA

S2E: For the external seeding in FLASH1, Puffin in it's current version is missing a few key

There is the option to model EEHG in puffin with a periodic method, this could be bench marked

Tentative Conclusions and Outlook

Considering Start to End simulations and Benchmarking

- S2E: For the external seeding in FLASH1, Puffin in it's current version is missing a few key \bullet capabilities to be used for EEHG
- ulletagainst what you hear in the later talks today

Questions:

Are the simulations done for comparison with FERMI data here available somewhere:

B. Garcia et al. COMPARING FEL CODES FOR ADVANCED CONFIGURATIONS, FEL2017, Santa Fe, NM, USA

DESY. | FLASH2020+ S2E Simulation Workshop | Welcome and Intro | P. Niknejadi, 16.12.2021

There is the option to model EEHG in puffin with a periodic method, this could be bench marked

Figure 3: The average power versus z for the FERMI HGHG setup from PUFFIN, GENESIS, and measured data.

Thank You