

Mitigation of parasitic losses in the QPR enabling direct measurements of low R_{res}

S. Keckert, W. Ackermann, H. De Gersem, X. Jiang, A. Ö. Sezgin, M. Vogel, M. Wenskat, R. Kleindienst, J. Knobloch, O. Kugeler, D. Tikhonov

14.01.2022

6th SMART meeting

CONCLUSION

- Very successful subproject thanks to...
 - → active discussions
 - → regular informal discussions
 - → short distances
 - → enabled by the SMART collaboration
- Biased QPR measurements due to parasitic losses
 - → Understood with the help of numerical simulations
 - → Mitigated by applying Nb on stainless coating
 - → Experimentally proven and verified
 - → Joint publication in AIP Advances

AIP Advances ARTICLE scitation.org/journal/adv

Mitigation of parasitic losses in the quadrupole resonator enabling direct measurements of low residual resistances of SRF samples

Cite as: AIP Advances 11, 125326 (2021); doi: 10.1063/5.0076715 Submitted: 27 October 2021 • Accepted: 3 December 2021 • Published Online: 27 December 2021


```
S. Keckert, 1.a) D W. Ackermann, D H. De Gersem, D X. Jiang, D A. Ö. Sezgin, D M. Vogel, D M. Wenskat, D R. Kleindienst, D J. Knobloch, 1.3 D O. Kugeler, D and D. Tikhonov
```

AFFILIATIONS

- ¹ Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- ²Technische Universität Darmstadt, Schloßgartenstraße 8, 64289 Darmstadt, Germany
- ³Universität Siegen, Adolf-Reichwein-Straße 2a, 57076 Siegen, Germany
- *Universität Hamburg, Mittelweg 177, 20148 Hamburg, Germany

STARTING SITUATION

→ Surprisingly high and similar residual resistance

THE CAUSE

 $\log |\vec{H}|$

 Calorimetric measurement of the RF surface resistance
 Integral of all losses on the sample assembly (weighted with the thermal distribution)

• non-zero RF magnetic field in the coaxial gap

THE CAUSE

- Calorimetric measurement of the RF surface resistance
 Integral of all losses on the sample assembly (weighted with thermal distribution)
- non-zero RF magnetic field in the coaxial gap
- Very low thermal conductivity of stainless steel at cryogenic temperatures

TABLE I. Sample temperature, effective power, and parasitic surface resistance for the first three quadrupole modes of the QPR resulting from the finite conductivity of the applied materials.

$B (\mathrm{mT}) \overline{T (\mathrm{K}) P (\mathrm{mW})} R_{\mathrm{S}} (\mathrm{n}\Omega) \overline{T (\mathrm{M}) R_{\mathrm{S}} (\mathrm{n}\Omega)} T $		Q_1			Q_2			Q_3		
10 2.030 0.266 12.6 2.058 0.515 26.0 2.124 1.127 63.0 2.017 1.062 12.6 2.219 2.050 25.9 2.446 4.449 62.1	B (mT)	T (K)	P (mW)	R_{S} (n Ω)	T(K)	P (mW)	$R_{\rm S}$ (n Ω)	T (K)	P (mW)	R_{S} (n Ω)
100 3.803 28.17 13.4 4.801 58.56 29.5 6.513 131.6 73.6	10 20 50	2.030 2.117 2.621	0.266 1.062 6.527	12.6 12.6 12.4	2.058 2.219 3.059	0.515 2.050 12.84	26.0 25.9 25.9	2.124 2.446 3.879	1.127 4.449 30.08	63.0 62.1 67.3

THE SOLUTION

→ We have to "switch off" losses on the sample adapter flange

Same RF field, different color scale!

THE SOLUTION

Thin film coating: Nb on stainless steel

- RF exposed surfaces only
- few μm → full screening
- CF knife edge covered during coating

THE IMPACT

Measured $\Delta R = 24 \text{ n}\Omega$ ΔR is independent of RF field \rightarrow bias of R_{res} only

OUTLOOK

- Optimization of covering masks ongoing
- 1st coating: Nb 'remnants' at bottom part of the flange
- 2nd coating: bottom part covered with additional mask
 - → low adhesion at inner cylindrical surface due to resputtering

