Surrogate Modeling of Ion Acceleration in the Near-Critical Density Regime with Invertible Neural Networks 14.12.2021

Thomas Miethlinger

Thomas Miethlinger · Computational Radiation Physics · www.hzdr.de/crp t.miethlinger@hzdr.de

Experimental pre-pulse setup

DRACO beam 18J, 30fs, 800nm PM cleaned contrast 4 x 10²¹W/cm²

Timed artificial pre-pulse 5.8 x 10¹⁷W/cm² (100mJ level, 19x32 µm spot size) 0...170 ps prior to the PW beam

- PM cleaned pulse contrast limits the premature target expansion to the last picosecond before the arrival of the high intensity peak
- Pre-expansion to several times the initial target diameter with pre-pulse

TU2

 H_2 jet

Tpp pre-pulse

DRACO PW

66

RCF

DDD

0°

Target expansion study

• What change in the density profile was triggered by the pre-pulse?

Assumption:

"box-like" radial density distribution of pre-expanded H2 jet with:

- R: core radius
- n₀: core density
- L_p plasma gradient
- Can by solved for each pre-pulse delay with particle number conservation, the exponential scale length and the threshold density for the transition opaque to transparent
- Correlation between shadow diameter and target model parameters (R, n₀, L_p)

Changes in proton acceleration when applying a pre-pulse

energies)

Maximum proton energies of up to 80 MeV

Increase in maximum proton energies for a certain pre-expansion

(smaller and larger expansions result in decreased proton

Thomas Miethlinger · Computational Radiation Physics · www.hzdr.de/crp t.miethlinger@hzdr.de DRESDEN

PICon **CPU**

3D PIC simulations by Ilja Göthel

Scan of pre-expansion by assuming a constant density in the core, pre-/rear plasma scale length taken from experimental values → Radius scan is a scan of the initial density

Simulation parameters: LASERPROFILE=GaussianBeam RES=24 cells/wavelength particles per cell=12u a0=33 FWHM=4.1 micron TARGETPROFILE=flat with exponential preand rear plasma; scale-lengths matching experimental probing

Real space proton distribution

page 7

Phase space x - px

Surrogate modeling of ion acceleration from 1D simulations

- Generate data using PIC simulations:
 - Hydrogen; cold (OK) target
 - PBC in transverse direction → (quasi-)1D simulations
 - 2 simulation campaigns:
 - Overdense (opaque) targets: ($20 \le n_0 \le 50, T \le 1\%$)
 - Near critical (relativistic transparent) targets: $(8 \le n_0 \le 50, n_0/\gamma < 1)$

• Vary 6 input parameter ($\alpha_0, \tau_{\rm FWHM}, n_0, d, \ell_0, \ell_1$)

- $\rightarrow (0.8 \cdot 1367)^{1/6} = 3.2$ sims. per dim.
- DOE via quasi Monte-Carlo
- 1367 simulations in total (code: Smilei*)

Quantity	Symbol	Unit	Min.	Max.	Scaling	
Normalized vector potential	a_0	[1]	7	22	linear	
Full width at half maximum	$ au_{\mathrm{FWHM}}$	[fs]	15	50	linear	
Number density (bulk)	n_0	$[n_{\rm c}]$	20	50	linear	
Target thickness	d	$[\mu m]$	1	10	exponential	
Short pre-plasma scale length	ℓ_0	[nm]	0.0	40.0	linear	
Long pre-plasma scale length	ℓ_1	[nm]	$\ell_0 + 10\mathrm{nm}$	500.0	linear	

Table 1: Overview of simulation parameter and design space for overdense case.

*Derouillat: Comput. Phys. Commun. 222, 351-373 (2018)

page 9

Acceleration mechanisms

Acceleration mechanisms

Thomas Miethlinger · Computational Radiation Physics · www.hzdr.de/crp t.miethlinger@hzdr.de

Modeling with neural networks

Learn quantities from simulations with neural networks:

- From input to output quantities
 - $E_i^{max}, T_e, f_i(p_x), f_e(p_x)$
 - Campaign 2: R, T
- Different NNs:
 - Standard Multilayer Perceptrons (MLPs)
 - Invertible Neural Networks (INNs)
 - Autoencoders (AEs)

Diagram of a multi-layer feedforward artificial neural network.*

Autoencoder schema.*

*Chrislb, CC BY-SA 3.0 <http://creativecommons.org/licenses/by-sa/3.0/>, via Wikimedia Commons

*Michela Massi, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

Invertible Neural Networks

Solving inverse problems with BNNs.

Invertible Neural Networks:

- Mapping from x to y is bijective, i.e., inverse (= INN⁻¹) exists
 - Introduction of latent space
- Learn inverse process jointly with forward process
- Obtain conditional posterior probabilities via sampling of $\mathbf{z} \sim N(0, 1)$.

Introduction of latent vector resolves ambiguity of inverse problem.*

Example Predictions: Maximum proton energies

Overdense and Near-critical data sets

Example Predictions: Scalars

If accuracy of forward pass of INN is ok, then what about speed/performance?

Check against ABC! \rightarrow

Maximum proton energies, electron temperatures

0.6

MLP

INN

0.8

1.0

	me	ean	median		
	MLP	INN	MLP	INN	
$E_{\rm p}^{\rm max}$	0.040	0.050	0.026	0.035	
\hat{T}_{e}	0.060	0.079	0.044	0.052	

INN: Performance test

Maximum proton energies, electron temperatures

	ABC				INN-ABC			
	min	max	median	mean	min	max	median	mean
Comp. time [s]	0.14	122.3	0.77	4.60	0.008	3.06	0.05	0.19
Accept. rate [1]	$1.4\cdot10^{-6}$	$1.5\cdot10^{-3}$	$2\cdot 10^{-4}$	$4 \cdot 10^{-4}$	$3 \cdot 10^{-4}$	$1.2\cdot10^{-1}$	$1.6\cdot10^{-2}$	$2.4\cdot10^{-2}$

Table 3: Benchmark comparison of ABC and INN-ABC for scalar observables $\mathbf{y} = (E_{\rm p}^{\rm max}, T_{\rm e})^{\mathsf{T}}$. Total run times are for ABC and INN-ABC are 1260,18 s and 50.89 s, respectively.

Factor 25 speedup!

ABC algorithm

- 0. Define distance function d, acceptance threshold ε and minimum number of accepted samples $N_{\rm acc}^{\rm min}$.
- 1. Generate N_{rnd} random input vectors $\{\mathbf{x}_k\}$ from parameter space.
- 2. Compute vectors in output space $\{\mathbf{y}_k\} = MLP(\{\mathbf{x}_k\})$
- 3. If $d(\mathbf{y}^{(i)}, \mathbf{y}_k) \leq \varepsilon$, then accept \mathbf{y}_k and update count of total number of accepted vectors $N_{\text{acc}}^{\text{tot}}$.
- 4. If $N_{\rm acc}^{\rm tot} < N_{\rm acc}^{\rm min}$, go to 1. Else, return set of accepted vectors.

INN performance test routine

- 0. Define distance function d, acceptance threshold ε and minimum number of accepted samples $N_{\rm acc}^{\rm min}$.
- 1. Generate N_{rnd} latent vectors $\{\mathbf{z}_k\}$ with $\mathbf{z} \sim \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}_{\dim_{\mathbf{z}}})$.
- 2. Compute approximation of conditional posterior distribution $\{\mathbf{x}_{k}^{(i)}\} = \text{INN}^{-1}(\mathbf{y}^{(i)}, \{\mathbf{z}_{k}\}).$
- 3. Compute vectors in output space $\{\mathbf{y}_k^{(i)}\} = MLP(\{\mathbf{x}_k^{(i)}\})$
- 4. If $d(\mathbf{y}^{(i)}, \mathbf{y}_k^{(i)}) \leq \varepsilon$, then accept $\mathbf{y}_k^{(i)}$ and update count of total number of accepted vectors $N_{\text{acc}}^{\text{tot}}$.
- 5. If $N_{\rm acc}^{\rm tot} < N_{\rm acc}^{\rm min}$, go o 1. Else, return set of accepted vectors.

Thomas Miethlinger · Computational Radiation Physics · www.hzdr.de/crp

t.miethlinger@hzdr.de

Accuracy Inverse Predictions:

Maximum proton energies, electron temperatures

Accuracy Inverse Predictions:

Maximum proton energies

Example Pred. : Proton, electron (momentum) spectra (1D Functional Data)

Accuracy Inverse Predictions: Proton momentum spectra

- INNs can learn both the forward as well as inverse process for different types (scalars, functional, images, ...) of data
- Given a model for the forward process, the accuracy of the INN can be interpreted in y-space.
 - Furthermore, we can compute uncertainty by mapping the sampled posterior onto y-space.

Inverse Predictions: (Un)Ambiguity of parameters

- Test if we can learn/recover from experimental observables f_i , f_e to (simulation) parameter x
 - Of course, this is in general a distribution $p(\mathbf{x}|\mathbf{y})$
 - Nevertheless, integrating over all but one variable might already contain useful information
- \rightarrow Means of posterior might (somewhat) recover parameter value.
- $ightarrow \ell_1$ (long pre-plasma scale length) leaves a characteristic signature in spectra
- \rightarrow In principle, models (trained on simulations) can also be applied to experimental data
 - Need corresponding & appropriate data set.

Model exploration

Surrogate models can help to increase rate of scientific discoveries.

E.g:

- Thickness *d* should be chosen smaller than 1 micron (at least for TNSA and according to (quasi)1d model)
 - Larger optimal thicknesses are expected for higher laser intensities (HB) and lower densities (MVA)
- Strong dependency on long pre-plasma scale length
 - which is in contrast to very overdense targets, say $n_0 > 100$
 - However, it seems $\nabla_{\ell_0} \approx \nabla_{\ell_1}$

Ei^{max} [MeV]

Conclusion and Outlook

Conclusion

- Trained machine learning models from performed simulation campaign (1367 simulations, 6 input parameter) with predictive accuracy.
- Both MLPs and INNs are useful and play an important role for modeling.
 - MLPs show strong predictive capabilities in the forward direction.
 - INNs show strong predictive capabilities in forward AND backward direction. Furthermore, in the backward direction INNs are much more efficient than standard method (they strongly outperform against ABC).
- Functional data, having several hundred dimensions, can be effectively learned with autoencoders (more robust AEs currently developed in Nico Hoffmann's group).

Outlook

- From observables / experimentally available outputs to "hidden" variables (e.g. phase space data).
- Cluster data to identify ranges of physical regimes.
- Check validity of theory in corresponding cluster.
- Do 2D/3D simulations, learn physics relevant to 2D/3D, e.g. instabilities.
- Use experimental data on models trained on simulations in the backward direction.

