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GSI/FAIR

I GSI/FAIR hosts variety of
ring accelerators

I SIS100 central accelerator of
future FAIR facility

I existing SIS18 will be used
as injector

Figure: GSI/FAIR facility.
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Field Errors

I unwanted multipoles
I excite resonances
I reduce dynamic aperture
I cause beam loss

I mitigation and correction
I requires type, location and strength
I compute from accurate model
I dedicated beam time necessary to find them

LOCO-algorithm, non-linear tune response
matrix
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Thin-Lens Model

I treat separable Hamiltonians H = T + V with Lie-algebra
I express phase-space transformations M via canonical integrators

I drift-kick scheme, symplectic by design
I maps derived for all major accelerator elements [MF15]
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Thin-Lens Model

I understand accelerator model as map R6 → R2xKxM

I map initial conditions to K BPM readings for M turns
I non-linear multi-dimensional optimization problem like artificial neural networks
I degrees of freedom during training: multipole strengths
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Training Procedure

I minimize discrepancy between prediction and measurement

I compare N trajectories by loss L
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I tracking implemented in PyTorch
[PGM+19]
I tools for automatic differentiation
I implementation of optimization

algorithms
I access to CPUs & GPUs
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Identification of Field Errors
Workflow
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Identification of Field Errors
Training Procedure

I 500 simulated trajectories
compared over 3 turns

I randomly group training data
into mini-batches

I ADAM optimizer,
hyperparameters optimized by
Gaussian Process
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Identification of Field Errors
Results
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Identification of Field Errors
Results
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Figure: Evolution of loss (left), quadrupole (middle) and sextupole components (right) during
training.
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Thin-lens Model
Results
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Thin-lens Model
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Identification of Field Errors
Results

training successfully applied to

I isolated gradient / sextupole
errors

I distributed errors

I chromaticity correction
scheme
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Conclusion

approach

I model accelerator based on thin-lens approximation & Lie-algebras

I canonical integrators expressed in terms of automatic differentiation

I 6D particle tracking implemented in PyTorch ML framework

outcome

I identify isolated & distributed multipole errors
I correctly reproduce physical observables

like beta-functions, tunes, chromaticities

I physical interpretation of model parameters as multipole strengths at any stage
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Outlook

I train on SIS18 experimental data
I study influence w.r.t. BPM measurement noise
I compare to results obtained by Non-linear Tune Response Matrix [PF11]
I leverage for resonance compensation

I study hyper-parameter optimization
I speed
I meta-learning

I investigate uniqueness of solution

I extend loss by additional quantities like phase advance
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End

Thank you for your attention!
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Physics-inspired Neural Networks

Physics-inspired Neural Networks

I exploit domain knowledge to construct network architecture

I replace layers by Taylor-maps M(~z) = ~z + W1~z + W2~z
2 + ...

~z =

[
z1
z2

]
; ~z2 =

 z21
z1z2
z22

 ; ~z3


z31
z21 z2
z1z

2
2

z32


I describe accelerator as concatenation
Maccelerator = Mk ◦Mk−1 ◦ ... ◦M1
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Physics-inspired Neural Networks
Taylor-maps

Taylor-maps

I represent transformations in 6D-phase space

I weight matrices Wk can be calculated by Truncated-Power-Series-Algebra

I or be obtained beam dynamics, e.g. affiliated from MAD-X, elegant, ...

I Quadrupole

Mquad = W1~z =

 cos
(√
|k |L

) sin
(√
|k|L

)
√
|k|√

|k | sin
(√
|k |L

)
cos
(√
|k|L

)
 (1)
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Thin-Lens Model

thin-lens approximation

I treat separable Hamiltonians H = T + V with Lie-algebra

I express phase-space transformations M via canonical integrators

M(~z) = e−L:H: = e−L:T+V : ≈ Πn
i=0e

−Lci :T :e−Ldi :V : +O(Ln+1)

= Πn
i=0(1 + ciL : −T :)(1 + diL : −V :) +O(Ln+1)

I symplectic by design
I maps derived for all major accelerator elements [MF15]
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