Identification of Field Errors with Machine Learning Techniques

Conrad Caliari

15.12.2021

Contact: <c.caliari@gsi.de>

GSI/FAIR

- \blacktriangleright GSI/FAIR hosts variety of ring accelerators
- \blacktriangleright SIS100 central accelerator of future FAIR facility
- \triangleright existing SIS18 will be used as injector

Figure: GSI/FAIR facility.

Field Errors

\blacktriangleright unwanted multipoles

- \blacktriangleright excite resonances
- \blacktriangleright reduce dynamic aperture
- \blacktriangleright cause beam loss
- \blacktriangleright mitigation and correction
	- \blacktriangleright requires type, location and strength
	- \triangleright compute from accurate model
	- \blacktriangleright dedicated beam time necessary to find them

LOCO-algorithm, non-linear tune response matrix

Accelerator Set Up

Accelerator Set Up

Accelerator Set Up

- **In** treat separable Hamiltonians $H = T + V$ with Lie-algebra
- \triangleright express phase-space transformations M via canonical integrators
	- \blacktriangleright drift-kick scheme, symplectic by design
- \triangleright maps derived for all major accelerator elements [\[MF15\]](#page-19-0)

Thin-Lens Model

D understand accelerator model as map $\mathbb{R}^6 \to \mathbb{R}^{2 \times K \times M}$

- \triangleright map initial conditions to K BPM readings for M turns
- \triangleright non-linear multi-dimensional optimization problem like artificial neural networks
- \blacktriangleright degrees of freedom during training: multipole strengths

Training Procedure

 \triangleright minimize discrepancy between prediction and measurement

compare N trajectories by loss $\mathcal L$

$$
\mathcal{L} = \frac{1}{N} \sum_{n}^{N} \sum_{m}^{M_{\text{turns}}} \sum_{k}^{K} \left(\begin{bmatrix} x \\ y \end{bmatrix}_{\text{model}} - \begin{bmatrix} x \\ y \end{bmatrix}_{\text{accelerator}} \right)_{m,n,k}^{2}
$$

- tracking implemented in PyTorch $[PGM+19]$ $[PGM+19]$
	- \blacktriangleright tools for automatic differentiation
	- \blacktriangleright implementation of optimization algorithms
	- access to CPUs & GPUs

Workflow

Training Procedure

- \blacktriangleright 500 simulated trajectories compared over 3 turns
- \blacktriangleright randomly group training data into mini-batches
- ADAM optimizer, hyperparameters optimized by Gaussian Process

Results

Identification of Field Errors **Results**

Figure: Evolution of loss (left), quadrupole (middle) and sextupole components (right) during training.

Thin-lens Model Results

Thin-lens Model Results

Results

training successfully applied to

- \triangleright isolated gradient / sextupole errors
- \blacktriangleright distributed errors
- \blacktriangleright chromaticity correction scheme

Conclusion

approach

- \triangleright model accelerator based on thin-lens approximation $\&$ Lie-algebras
- \triangleright canonical integrators expressed in terms of automatic differentiation
- I 6D particle tracking implemented in PyTorch ML framework

outcome

- \triangleright identify isolated $\&$ distributed multipole errors
- \triangleright correctly reproduce physical observables like beta-functions, tunes, chromaticities
- I physical interpretation of model parameters as multipole strengths at any stage

Outlook

\triangleright train on SIS18 experimental data

- \triangleright study influence w.r.t. BPM measurement noise
- ▶ compare to results obtained by Non-linear Tune Response Matrix [\[PF11\]](#page-19-1)
- \blacktriangleright leverage for resonance compensation
- \blacktriangleright study hyper-parameter optimization
	- \blacktriangleright speed
	- \blacktriangleright meta-learning
- \triangleright investigate uniqueness of solution
- \triangleright extend loss by additional quantities like phase advance

Thank you for your attention!

References I

[Gra08] Paul Grannis. Particle accelerators - herding and hurrying cats, 2008.

- [IA20] Andrei Ivanov and Ilya Agapov. Physics-based deep neural networks for beam dynamics in charged particle accelerators. Physical Review Accelerators and Beams, 23(7):074601, 2020.
- [Lat20] Andrea Latina. Transverse beam dynamics, 2020.
- [MF15] R De Maria and M Fjellstrom. Sixtrack physics manual (draft), 2015.
- [PF11] A Parfenova and G Franchetti. Experimental benchmarking of nonlinear tune response matrix with several controlled sextupolar errors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 646(1):7–11, 2011.

References II

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. arXiv preprint arXiv:1912.01703, 2019.

[Sca95] Walter Scandale. Dynamic aperture. In AIP Conference Proceedings, volume 326, pages 52–97. American Institute of Physics, 1995.

Physics-inspired Neural Networks

Physics-inspired Neural Networks

- \triangleright exploit domain knowledge to construct network architecture
- replace layers by Taylor-maps $\mathcal{M}(\vec{z}) = \vec{z} + W_1\vec{z} + W_2\vec{z}^2 + ...$

$$
\vec{z} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}; \quad \vec{z}^2 = \begin{bmatrix} z_1^2 \\ z_1 z_2 \\ z_2^2 \end{bmatrix}; \quad \vec{z}^3 \begin{bmatrix} z_1^3 \\ z_1^2 z_2 \\ z_1 z_2^2 \\ z_2^3 \end{bmatrix}
$$

 \blacktriangleright describe accelerator as concatenation $M_{\text{accelerator}} = M_k \circ M_{k-1} \circ ... \circ M_1$

Physics-inspired Neural Networks

Taylor-maps

Taylor-maps

- \blacktriangleright represent transformations in 6D-phase space
- ight matrices W_k can be calculated by Truncated-Power-Series-Algebra
- \triangleright or be obtained beam dynamics, e.g. affiliated from MAD-X, elegant, ...

 \blacktriangleright Quadrupole

$$
\mathcal{M}_{\text{quad}} = W_1 \vec{z} = \begin{bmatrix} \cos\left(\sqrt{|k|}L\right) & \frac{\sin\left(\sqrt{|k|}L\right)}{\sqrt{|k|}}\\ \sqrt{|k|} \sin\left(\sqrt{|k|}L\right) & \cos\left(\sqrt{|k|}L\right) \end{bmatrix} \tag{1}
$$

thin-lens approximation

In treat separable Hamiltonians $H = T + V$ **with Lie-algebra**

 \triangleright express phase-space transformations M via canonical integrators

$$
\mathcal{M}(\vec{z}) = e^{-L:H:} = e^{-L:\mathcal{T}+V:} \approx \Pi_{i=0}^{n} e^{-Lc_{i}:\mathcal{T}:} e^{-Ld_{i}:\mathcal{V}:} + \mathcal{O}(L^{n+1})
$$

= $\Pi_{i=0}^{n} (1 + c_{i}L: -T:)(1 + d_{i}L: -V:)+ \mathcal{O}(L^{n+1})$

 \blacktriangleright symplectic by design

 \triangleright maps derived for all major accelerator elements [\[MF15\]](#page-19-0)