MPI in Vector Boson plus jet(s)

production at the LHC

Ezio Maina University of Torino

Outline

- * Introduction
- * Recap of V+4j results
- * Update on top-antitop
- * Z+jets
- * Conclusions

What we know, what we would like to know

MPI well established experimentally eg: γ+3j AFS, UA2, CDF, D0
Each interaction hard enough to be treated by perturbative QCD
In first approximation

σ_{DPI} = σ₁ σ₂ / σ_{eff} /k σ_{eff}≈14.5 mb CDF,D0 k=1,2
Treleani argues for σ_{eff}≈12 mb at the LHC

Pythia/Herwig/Sherpa describe UE in terms of MPI

 $\sigma_{\text{DPI(Pythia)}} = \langle f \rangle \sigma_1 \sigma_2 / \sigma_{\text{ND}} / k \quad \sigma_{\text{ND}} \approx 51.6 \text{ mb} \quad \langle f \rangle \approx 1.33 \quad @7\text{TeV}$ $\sigma_{\text{eff(Pythia)}} = \sigma_{\text{ND}} / \langle f \rangle \approx 39 \text{ mb}$

Pt of Hardest Gen Jets after selection

CDF: Martinez-Perez MC4LHC Workshop April 2010

What we know, what we would like to know II

* How serious is the MPI background for interesting physics?

* Which high pT MPI reactions can be studied at the LHC?

K Can we measure Triple Particle Interactions and higher?

k What can be done at 7 TeV and 1 fb⁻¹?

MPI,SPI,DPI,TPI: Multiple,Single,Double,Triple Parton Interactions

t-tbar production: an ideal playground

- * Early measurement at the LHC
- K M_{top} is a fundamental parameter for the SM
- Best channel: semileptonic lv+4j
- Main background W+4j

100 pb⁻¹ No b-tagging Reconstruct from mass of jet triplet with largest pT Main background: W+4j

1 fb⁻¹ b-tagging Full reconstruction of final state Main background: misidentification and combinatorics

Method: $\sigma_1 \otimes \sigma_2 \otimes \dots$

- * Generate events for the two processes separately: eg jj, jjW with MadEvent
- Superimpose one event from each sample
- No check on energy conservation (No problem in practice)
- No flavour correlations (Treleani up to 40% reduction)
- No color correlations (irrelevant at generator level)
- Analyze: impose cuts on combined events

V+4j can be produced in MPI as: $jj \otimes jjV$ $jjj \otimes jV$ $W \rightarrow \mu v$ $jjj \otimes V$ $Z \rightarrow \mu \mu$ $jj \otimes jj \otimes V$

JHEP04(2009) 098 W4j JHEP09(2009) 081 Z4j

5 final state partons allows Triple Parton Int.'s

Single Parton Interactions: PHANTOM & MadEvent

$$M_{top} = 175 \text{ GeV} \quad \sigma_{eff} = 14.5 \text{ mb}$$

 M_{jjj} = mass of jet triplet with max pT

 $W \to \mu v \qquad only$

Process	Cross section
${\cal O}(lpha_{_{EM}}^4 lpha_{_S}^2)$	10.8 pb
${\cal O}(lpha_{\scriptscriptstyle EM}^2 lpha_{\scriptscriptstyle S}^4)$	0.76 pb
${\cal O}(lpha_{\scriptscriptstyle EM}^2 lpha_{\scriptscriptstyle S}^4)_{ m DPI}$	$0.12 \mathrm{~pb}$
${\cal O}(lpha_{_{EM}}^2 lpha_{_S}^4)_{ m TPI}$	0.01 pb
${\cal O}(lpha_{{\scriptscriptstyle EM}}^6)$	0.04 pb

 $170 \text{ GeV} < M_{iii} < 180 \text{ GeV}$

W+4j /tt \approx 7% MPI/tt \approx 1%

Not a problem for mass measurement. Cross section? Negligible when b-tagging available

A bit more realistic...

R. Chierici, E.M. - LesHouches09 in arXiv:1003.1643

ΔR=0.1

10 TeV

Used Pythia8 to generate t-tbar, Wj⊗jj, Wjj(MG)⊗jj, b-bbar⊗jj, b-bbar(MG)j⊗jj with showering and and jet clustering

Require isolated, central and energetic lepton

ΔR=0.1

ΔR=0.5

Lepton isolation cut kills bb-bar background

Cuts which eliminate Wjj+shower can deal with MPI too!

Looking for MPI in Iv+4j

Basic cuts $\Delta R(jj) > 0.5$ $\Delta R(jl^{\pm}) > 0.5$

Get rid of t-tbar

 $|M_{iii}-M_t|>10 \text{ GeV}$

MPI gives larger separation

of forward/backward jets

 $|\Delta \eta(j_{f}j_{b})| > 3.8$

 σ_{eff} =14.5 mb

Process	Cross section	
${\cal O}(lpha_{_{EM}}^4 lpha_{_S}^2)$	1.16 pb	
${\cal O}(lpha_{\scriptscriptstyle EM}^2 lpha_{\scriptscriptstyle S}^4)$	24.01 pb	
$\mathcal{O}(lpha_{_{EM}}^2 lpha_{_S}^4)_{\mathrm{DPI}}$	2.91 pb	S/B ¹ / ₂ =
${\cal O}(lpha_{\scriptscriptstyle EM}^2 lpha_{\scriptscriptstyle S}^4)_{ m TPI}$	0.16 pb	5.8(6.1) L=100 pb ⁻¹
${\cal O}(lpha_{_{EM}}^6)$	$0.05~{ m pb}$	MPI/4jW=1/8
Densingted		

Dominated by jj⊗Wjj

Process	Cross section	Cross section
${\cal O}(lpha_{\scriptscriptstyle EM}^4 lpha_{\scriptscriptstyle S}^2)$	25.0 pb	22.0 pb
${\cal O}(lpha_{\scriptscriptstyle EM}^2 lpha_{\scriptscriptstyle S}^4)$	$64.7 \mathrm{\ pb}$	58.9 pb
${\cal O}(lpha_{_{EM}}^2 lpha_{_S}^4)_{ m DPI}$	$5.6 \mathrm{~pb}$	5.3 pb
${\cal O}(lpha_{\scriptscriptstyle EM}^2 lpha_{\scriptscriptstyle S}^4)_{ m TPI}$	$0.27 \mathrm{\ pb}$	0.26 pb
${\cal O}(lpha_{_{EM}}^6)$	$0.22 \mathrm{~pb}$	0.20 pb

Triple Parton Interactions: so far unobserved

Two jet pairs back to back in the transverse plane DY W with "zero" pT (also in DPI: less effective) $\sigma_{TPI} = \sigma_1 \sigma_2 \sigma_3 / \sigma_{eff}^2 / k$

Process	Cross section
${\cal O}(lpha_{\scriptscriptstyle EM}^4 lpha_{\scriptscriptstyle S}^2)$	0.75 pb
${\cal O}(lpha_{\scriptscriptstyle EM}^2 lpha_{\scriptscriptstyle S}^4)$	15.61 pb
${\cal O}(lpha_{\scriptscriptstyle EM}^2 lpha_{\scriptscriptstyle S}^4)_{ m DPI}$	2.61 pb
${\cal O}(lpha_{_{EM}}^2 lpha_{_S}^4)_{ m TPI}$	0.16 pb
${\cal O}(lpha_{_{EM}}^6)$	0.03 pb

$$|\Delta \phi(jj)_{\max}| > 0.9 \cdot \pi$$

TPI/DPI/Bkg 1 / 16 /100

16k events for L=10 fb⁻¹ TPI more than 50% of last bin: 2 deg.

 σ_{eff} =14.5 mb

PDF's Correlations

* Factorization ansatz for dPDF's is violated by dGLAP evolution

 Gaunt&Stirling has provided a set of correlated DPDF's which satisfy flavour and number sum rules. Based on the MSTW2008 set. Allows two different scales for the two interactions.

What can be done with 1 fb⁻¹ or less @ 7 TeV ?

Method: reweighting

 Two sets of unweighted events generated independently with Madgraph using CTEQ6 PDF's

* Reweight e.g. $(q_i \bar{q_i} \rightarrow g l^+ l^-) \otimes (gg \rightarrow gg)$ with

$$R = \frac{F_i^{^{MRST}}(t_1)F_{\bar{i}}^{^{MRST}}(t_1)}{F_i^{^{CTEQ}}(t_1)F_{\bar{i}}^{^{CTEQ}}(t_1)} \times \frac{\alpha_s^{^{MRST}}(t_1)}{\alpha_s^{^{CTEQ}}(t_1)} \times \frac{F_g^{^{MRST}}(t_2)F_g^{^{MRST}}(t_2)}{F_g^{^{CTEQ}}(t_2)F_g^{^{CTEQ}}(t_2)} \times \frac{\alpha_s^{^{MRST}}(t_2)^2}{\alpha_s^{^{CTEQ}}(t_2)^2}$$

* Produce combined sample of weighted events. Error could be an issue

* As a byproduct estimate sensitivity to PDF choice

Z+n-jets n=2,3,4 $Z \rightarrow I^+I^-$

- * Large cross section ~ pb
- * Simplest case has only two jets (γ+jets needs three)
- Easily identifyable final state. Stringent cuts on lept iso not needed
 Heavy quark decay not a problem
- * Conclusions valid also for W+n-jets with × 10 $\sigma \rightarrow$ S/B $^{\frac{1}{2}}$ 3 times larger
- * If Pythia is right S/B $\frac{1}{2}$ 1.7 times smaller

$\begin{array}{l} p_{T_{j}} \geq 30 {\rm GeV} , \ \eta_{j} \leq 5.0 , \\ p_{T_{\ell}} \geq 20 {\rm GeV} , \ \eta_{\ell} \leq 2.5 , \\ \Delta R_{jj} \geq 0.1 , \ \Delta R_{jl} \geq 0.1 \end{array} \qquad $									
	ΔR_{jj} =0.5 σ_{eff} =12 mb								
in pb	14 TeV			14 TeV 10 TeV 7 TeV			$7 { m TeV}$		
Process	CTEQ	MSTW	GS09	CTEQ	MSTW	GS09	CTEQ	MSTW	GS09
SPI	52.65	60.70		30.63	35.15		16.56	18.88	
DPI	11.27	13.80	15.08	4.80	5.86	6.30	1.88	2.28	2.40

 $Q^2 = \sum p_T^2$ larger in SPI $Q^2 = M_Z^2$ for DY

10% increase MSTW2008LO \rightarrow GS09

initial state qg

DPI_{GS}/SPI_{MSTW} = 0.25, 0.18, 0.13 @ 14, 10, 7 TeV

S/B ¹/₂ = 19, 10, 5.5 for L=100 pb⁻¹

DPI_{GS}/SPI_{MSTW} = 0.19, 0.13, 0.09 @ 14, 10, 7 TeV

S/B ¹/₂ = 26, 13, 6 for L=1 fb⁻¹

 ΔR_{ii} =0.5 σ_{eff} =12 mb

Z+3-jets

in pb	14 TeV			$10 { m TeV}$			$7 { m TeV}$		
Process	CTEQ	MSTW	GS09	CTEQ	MSTW	GS09	CTEQ	MSTW	GS09
SPI	15.71	19.10		8.46	10.23		4.11	4.93	
DPI	2.70	3.41	3.62	1.02	1.28	1.32	0.34	0.43	0.43

DPI_{GS}/SPI_{MSTW} = 0.24, 0.17, 0.12 @ 14, 10, 7 TeV

S/B $\frac{1}{2}$ = 18, 8, 3.7 for L=1 fb⁻¹

∆R_{ii}=0.5

Z+4-jets

in pb	14 TeV			$10 { m TeV}$			$7 { m TeV}$		
Process	CTEQ	MSTW	GS09	CTEQ	MSTW	GS09	CTEQ	MSTW	GS09
SPI	4.26	5.41		2.00	2.53		0.83	1.04	
DPI	0.96	1.28	1.30	0.33	0.43	0.42	0.10	0.13	0.12

S/B $\frac{1}{2}$ is fine but a counting experiment is not such a good idea

SPI contribution can be measured at large jet pT V+3j available at NLO. V+4j first results YESTERDAY **arXiv:1009.2338**.

Other kinematical variables are available.

Conclusions

 MPI do represent a significant background to high pT processes at the LHC

- A large number of high PT reaction which are sensitive to MPI can be measured at the LHC
- * Correlation effects are not large
- Discrepancy in normalization between PYTHIA and D0/CDF should be fixed asap by new measurements
- * V+jets are good candidates already @ 7 TeV and 1 fb⁻¹