Multiple parton interactions: some theoretical considerations

M. Diehl
Deutsches Elektronen-Synchroton DESY

MPI 10, Hamburg, 14 September 2010

HELMHOLTZ
| GEMEINSCHAFT

Multiparton interactions

- phenomenology based on simple, physically intuitive formula

$$
\begin{aligned}
\text { cross section }= & \text { multiparton distributions } \\
& \times \text { hard-scattering cross sections } \\
& \text { cf. e.g. Paver, Treleani 1982, 1984; Mekhfi } 1985
\end{aligned}
$$

questions:

- to which extent can this formula be derived in QCD?
- where and how does it need to be modified?
- can a factorization theorem for multiparton interactions be formulated and proven?
- no definitive answers in present talk but some steps in this direction

MD, Ostermeier, Schäfer, in preparation

Theoretical framework

- require all interactions to have hard scale
\leadsto predictive power from factorization and pert. theory
- consider gauge boson pair production (pairs of γ^{*}, W, Z)

- jet production highly relevant in practice but gluon exchange with spectator partons \gg complicated for single dijet production cf. Mulders, Rogers 2010
- keep transverse momentum of bosons differential
- are interested in final-state details (distributions, cuts etc)
- need k_{T} dependent parton distributions
basic formalism by Collins, Soper 1982 recent work by Ji, Ma, Yuan 2004; Collins, Rogers, Stasto 2007

Basic structure: momentum

- longitudinal parton momenta $x_{i} p, \bar{x}_{i} \bar{p}$ fixed by final-state bosons
- transverse momentum balance:

$$
\boldsymbol{q}_{1}=\left(\boldsymbol{k}_{1} \pm \frac{1}{2} \boldsymbol{r}_{1}\right)+\left(\overline{\boldsymbol{k}}_{1} \pm \frac{1}{2} \overline{\boldsymbol{r}}_{1}\right) \quad \Rightarrow \quad \boldsymbol{r}_{1}+\overline{\boldsymbol{r}}_{1}=\mathbf{0}
$$

\rightsquigarrow transverse parton momenta not the same on left and right of final-state cut

- Fourier transform to impact parameter: $\boldsymbol{r}_{1} \rightarrow \boldsymbol{y}$ and $\overline{\boldsymbol{r}}_{1} \rightarrow \overline{\boldsymbol{y}}$

$$
\boldsymbol{r}_{1}+\overline{\boldsymbol{r}}_{1}=\mathbf{0} \text { implies } \boldsymbol{y}=\overline{\boldsymbol{y}}
$$

Basic structure: cross section

- get cross section formula

$$
\begin{gathered}
\frac{d \sigma}{d x_{1} d \bar{x}_{1} d^{2} \boldsymbol{q}_{1} d x_{2} d \bar{x}_{2} d^{2} \boldsymbol{q}_{2}}=\left[\prod_{i=1}^{2} \hat{\sigma}_{i}\left(q_{i}^{2}=x_{i} \bar{x}_{i} s\right)\right] \\
\times\left[\prod_{i=1}^{2} \int d^{2} \boldsymbol{k}_{i} d^{2} \overline{\boldsymbol{k}}_{i} \delta\left(\boldsymbol{q}_{i}-\boldsymbol{k}_{i}-\overline{\boldsymbol{k}}_{i}\right)\right] \int d^{2} \boldsymbol{y} F\left(x_{i}, \boldsymbol{k}_{i}, \boldsymbol{y}\right) \bar{F}\left(\bar{x}_{i}, \overline{\boldsymbol{k}}_{i}, \boldsymbol{y}\right) \\
\hat{\sigma}_{i}=\text { parton-level cross section } \\
F\left(x_{i}, \boldsymbol{k}_{i}, \boldsymbol{y}\right)=k_{T} \text { dependent two-parton distribution }
\end{gathered}
$$

- result follows from Feynman graphs and hard-scattering approximation no semi-classical approximation required
$-\int d^{2} \boldsymbol{q}_{1} \int d^{2} \boldsymbol{q}_{2}$ in cross sect. \rightarrow collinear distributions

$$
F\left(x_{i}, \boldsymbol{y}\right)=\int d^{2} \boldsymbol{k}_{1} \int d^{2} \boldsymbol{k}_{2} F\left(x_{i}, \boldsymbol{k}_{i}, \boldsymbol{y}\right)
$$

recover usual cross section formula (slide 2)

Operator definitions

- k_{T} dependent distribution

$$
\begin{aligned}
& F\left(x_{i}, \boldsymbol{k}_{i}, \boldsymbol{y}\right)=\int \frac{d z_{2}^{-} d^{2} \boldsymbol{z}_{2}}{(2 \pi)^{3}} e^{i x_{2} z_{2}^{-} p^{+}-i \boldsymbol{z}_{2} \boldsymbol{k}_{2}} \int \frac{d z_{1}^{-} d^{2} \boldsymbol{z}_{1}}{(2 \pi)^{3}} e^{i x_{1} z_{1}^{-} p^{+}-i \boldsymbol{z}_{1} \boldsymbol{k}_{1}} \\
& \quad \times 2 p^{+} \int d y^{-}\langle p| \bar{q}\left(-\frac{1}{2} z_{2}\right) \Gamma_{2} q\left(\frac{1}{2} z_{2}\right) \bar{q}\left(y-\frac{1}{2} z_{1}\right) \Gamma_{1} q\left(y+\frac{1}{2} z_{1}\right)|p\rangle_{z_{i}^{+}=y^{+}=0}
\end{aligned}
$$

- collinear distributions

$$
\begin{aligned}
& F\left(x_{i}, \boldsymbol{y}\right)=\int \frac{d z_{2}^{-}}{2 \pi} e^{i x_{2} z_{2}^{-} p^{+}} \int \frac{d z_{1}^{-}}{2 \pi} e^{i x_{1} z_{1}^{-} p^{+}} \\
& \quad \times 2 p^{+} \int d y^{-}\langle p| \bar{q}\left(-\frac{1}{2} z_{2}\right) \Gamma_{2} q\left(\frac{1}{2} z_{2}\right) \bar{q}\left(y-\frac{1}{2} z_{1}\right) \Gamma_{1} q\left(y+\frac{1}{2} z_{1}\right)|p\rangle_{\substack{z_{i}^{+}=y^{+}=0 \\
z_{i}=0}}
\end{aligned}
$$

still $\boldsymbol{y} \neq \mathbf{0} \Rightarrow$ fields at different transverse positions
\Rightarrow not a twist-four operator but product of two twist-two operators

Power behavior: single versus double hard scattering

- from scattering formulae readily find

$$
s \frac{d \sigma}{d x_{1} d \bar{x}_{1} d^{2} \boldsymbol{q}_{1} d x_{2} d \bar{x}_{2} d^{2} \boldsymbol{q}_{2}} \sim \frac{1}{Q^{2} \Lambda^{2}}
$$

$$
Q^{2} \sim q_{i}^{2}, \Lambda^{2} \sim \mathrm{GeV}^{2}
$$

for both

\Rightarrow double scattering not power suppressed

Power behavior: single versus double hard scattering

- from scattering formulae readily find

$$
s \frac{d \sigma}{d x_{1} d \bar{x}_{1} d^{2} \boldsymbol{q}_{1} d x_{2} d \bar{x}_{2} d^{2} \boldsymbol{q}_{2}} \sim \frac{1}{Q^{2} \Lambda^{2}} \quad \quad Q^{2} \sim q_{i}^{2}, \Lambda^{2} \sim \mathrm{GeV}^{2}
$$

for both

\Rightarrow double scattering not power suppressed

- but if integrate over \boldsymbol{q}_{1} and \boldsymbol{q}_{2} then

$$
\begin{array}{llrl}
\text { single: } & s \frac{d \sigma}{d x_{1} d \bar{x}_{1} d x_{2} d \bar{x}_{2}} \sim 1 & \text { since } & \int d^{2}\left(\boldsymbol{q}_{1}+\boldsymbol{q}_{2}\right) \sim \Lambda^{2} \\
& & \text { and } & \int d^{2}\left(\boldsymbol{q}_{1}-\boldsymbol{q}_{2}\right) \sim Q^{2} \\
\text { double: } & s \frac{d \sigma}{d x_{1} d \bar{x}_{1} d x_{2} d \bar{x}_{2}} \sim \frac{\Lambda^{2}}{Q^{2}} & \text { since } & \int d^{2} \boldsymbol{q}_{1} \int d^{2} \boldsymbol{q}_{2} \sim \Lambda^{4}
\end{array}
$$

i.e. single hard scattering has larger phase space for transv. momenta
previous formulae glossed over important details:

- quark flavors and quarks vs. antiquarks
- parton spin
- color
- scale dependence/evolution
- additional gluon exchange
essential for factorization
situation similar to single hard scattering, not discussed here

Interference effects

- so far: distributions with operators $\bar{q}_{2} q_{2} \bar{q}_{1} q_{1} \rightsquigarrow$ double parton densities indices 1 and 2 refer to momentum fractions x_{1}, x_{2}
- but also have interference contributions (no probability interpretation)

- must be included in cross section formula but is discarded in existing estimates

Spin structure

$$
\begin{aligned}
& \times 2 p^{+} \int d y^{-}\langle p| \bar{q}\left(-\frac{1}{2} z_{2}\right) \Gamma_{2} q\left(\frac{1}{2} z_{2}\right) \bar{q}\left(y-\frac{1}{2} z_{1}\right) \Gamma_{1} q\left(y+\frac{1}{2} z_{1}\right)|p\rangle
\end{aligned}
$$

- at leading twist for quarks: $\Gamma_{i}=\frac{1}{2} \gamma^{+}, \frac{1}{2} \gamma^{+} \gamma_{5}, \frac{1}{2} \sigma^{+\alpha}$
- spin correlations even in unpolarized target, e.g.

$$
\Gamma_{1}=\Gamma_{2}=\frac{1}{2} \gamma^{+} \gamma_{5} \quad \Leftrightarrow \quad q_{1}^{\uparrow} q_{2}^{\uparrow}+q_{1}^{\downarrow} q_{2}^{\perp}-q_{1}^{\uparrow} q_{2}^{\perp}-q_{1}^{\perp} q_{2}^{\uparrow}
$$

note: not suppressed by hard scattering in double Drell-Yan

- transverse spin correlations from $\Gamma_{1}=\Gamma_{2}=\frac{1}{2} \sigma^{+\alpha}$ $\rightsquigarrow \cos 2 \phi$ modulation between decay planes of the two bosons at low $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}$ single hard scattering does not give $\cos 2 \phi$ term in general: correlated decay planes

Spin structure

$$
\begin{aligned}
& \times 2 p^{+} \int d y^{-}\langle p| \bar{q}\left(-\frac{1}{2} z_{2}\right) \Gamma_{2} q\left(\frac{1}{2} z_{2}\right) \bar{q}\left(y-\frac{1}{2} z_{1}\right) \Gamma_{1} q\left(y+\frac{1}{2} z_{1}\right)|p\rangle
\end{aligned}
$$

- at leading twist for quarks: $\Gamma_{i}=\frac{1}{2} \gamma^{+}, \frac{1}{2} \gamma^{+} \gamma_{5}, \frac{1}{2} \sigma^{+\alpha}$
- spin correlations even in unpolarized target, e.g.

$$
\Gamma_{1}=\Gamma_{2}=\frac{1}{2} \gamma^{+} \gamma_{5} \quad \Leftrightarrow \quad q_{1}^{\uparrow} q_{2}^{\uparrow}+q_{1}^{\downarrow} q_{2}^{\perp}-q_{1}^{\uparrow} q_{2}^{\perp}-q_{1}^{\perp} q_{2}^{\uparrow}
$$

note: not suppressed by hard scattering in double Drell-Yan

- may naively expect spin effects to decrease for small x_{1}, x_{2}, but
- will see counter-example on slide 15
- for $x_{1} \sim x_{2} \ll 1$ spin correlations may be weak a parton and the proton (far away in rapidity) important between two partons (close in rapidity)

Color structure

$$
\begin{aligned}
& \times 2 p^{+} \int d y^{-}\langle p| \bar{q}\left(-\frac{1}{2} z_{2}\right) \Gamma_{2} q\left(\frac{1}{2} z_{2}\right) \bar{q}\left(y-\frac{1}{2} z_{1}\right) \Gamma_{1} q\left(y+\frac{1}{2} z_{1}\right)|p\rangle
\end{aligned}
$$

- operators $\bar{q}_{2} q_{2}$ and $\bar{q}_{1} q_{1}$ can couple to color singlet or octet:

$$
\begin{aligned}
& F_{1} \rightarrow\left(\bar{q}_{2} \mathbb{1} q_{2}\right)\left(\bar{q}_{1} \mathbb{1} q_{1}\right) \\
& F_{8} \rightarrow\left(\bar{q}_{2} t^{a} q_{2}\right)\left(\bar{q}_{1} t^{a} q_{1}\right)=\frac{1}{2}\left(\bar{q}_{2} \mathbb{1} q_{1}\right)\left(\bar{q}_{1} \mathbb{1} q_{2}\right)-\frac{1}{2 N_{c}}\left(\bar{q}_{2} \mathbb{1} q_{2}\right)\left(\bar{q}_{1} \mathbb{1} q_{1}\right)
\end{aligned}
$$

- relative weight in gauge boson pair production:

$$
\frac{1}{N_{c}^{2}} F_{1} \bar{F}_{1}+\frac{4}{N_{c}^{2}-1} F_{8} \bar{F}_{8}
$$

- color octet distributions essentially unknown (no probability interpretation as a guide)
spin and color correlations discussed by M Mekhfi, PRD32 (1985)
but apparently not followed up in literature

High q_{T} : more predictive power

- consider region $\Lambda \ll q_{T} \ll Q$, with $q_{T} \sim\left|q_{i}\right| \quad$ have $\left|\boldsymbol{k}_{i}\right| \sim q_{T}$
- k_{T} dependent distr'n $=$ hard scattering \otimes collinear distr'n hard scattering closely related to DGLAP splitting functions
- case 1: $\left|\boldsymbol{r}_{1}\right| \sim \Lambda$, i.e. $|\boldsymbol{y}| \sim 1 / \Lambda$ of hadronic size \rightsquigarrow independent hard scatters for pair 1 and 2

- color factors: C_{F}^{2} for singlet F_{1} $\left(\frac{1}{2 N_{c}}\right)^{2}$ for octet F_{8}
- singlet also favored in gluon sector

High q_{T} : more predictive power

- consider region $\Lambda \ll q_{T} \ll Q$, with $q_{T} \sim\left|q_{i}\right| \quad$ have $\left|\boldsymbol{k}_{i}\right| \sim q_{T}$
- k_{T} dependent distr' $\mathrm{n}=$ hard scattering \otimes collinear distr'n hard scattering closely related to DGLAP splitting functions
- case 1: $\left|\boldsymbol{r}_{1}\right| \sim \Lambda$, i.e. $|\boldsymbol{y}| \sim 1 / \Lambda$ of hadronic size

- case 2: $\left|\boldsymbol{r}_{1}\right| \sim\left|\boldsymbol{q}_{i}\right|$, i.e. $|\boldsymbol{y}| \ll 1 / \Lambda$ small

longitudinal q and \bar{q} spins fully correlated also find sizeable transverse spin correlation
- find: case 1 is power suppressed by Λ^{2} / q_{T}^{2} compared with case 2 but has small- x enhancement

Evolution of collinear distributions

consider only color singlet combination F_{1}, situation for F_{8} more complicated

$$
\begin{aligned}
& F\left(x_{i}, \boldsymbol{y}\right)=\int \frac{d z_{2}^{-}}{2 \pi} e^{i x_{2} z_{2}^{-} p^{+}} \int \frac{d z_{1}^{-}}{2 \pi} e^{i x_{1} z_{1}^{-} p^{+}} \\
& \quad \times 2 p^{+} \int d y^{-}\langle p| \bar{q}\left(-\frac{1}{2} z_{2}\right) \Gamma_{2} q\left(\frac{1}{2} z_{2}\right) \bar{q}\left(y-\frac{1}{2} z_{1}\right) \Gamma_{1} q\left(y+\frac{1}{2} z_{1}\right)|p\rangle z_{i}^{+}=y^{+}=0, z_{i}=\mathbf{0}
\end{aligned}
$$

- $F\left(x_{i}, \boldsymbol{y}\right)$ for $y \neq 0$:
separate DGLAP evolution for pair 1 and 2
$\frac{d}{d \log \mu} F\left(x_{i}, \boldsymbol{y}\right)=P \otimes_{x_{1}} F+P \otimes_{x_{2}} F$

$-\int d^{2} \boldsymbol{y} F\left(x_{i}, \boldsymbol{y}\right):$
extra term from $2 \rightarrow 4$ parton transition
Kirschner 1979; Shelest, Snigirev, Zinovev 1982 recent study: Gaunt and Stirling

Evolution of collinear distributions: a closer look

- recall: in process cross sections need $\int d^{2} \boldsymbol{y} F\left(x_{i}, \boldsymbol{y}\right) \bar{F}\left(\bar{x}_{i}, \boldsymbol{y}\right)$
- $2 \rightarrow 4$ splitting graphs give contribution

$$
\left.F\left(x_{i}, \boldsymbol{y}\right)\right|_{2 \rightarrow 4} \propto 1 / \boldsymbol{y}^{2}
$$

logarithmic UV divergence only when $\int d^{2} \boldsymbol{y}$

- \rightsquigarrow consistency problem for ansatz

$$
F\left(x_{i}, \boldsymbol{y} ; \mu\right)=G(\boldsymbol{y})\left[\int d^{2} \boldsymbol{y} F\left(x_{i}, \boldsymbol{y}\right)\right]_{\mu}
$$

if on r.h.s. include $2 \rightarrow 4$ term in evolution

- may want to define modified $F\left(x_{i}, \boldsymbol{y}\right)$ where short-distance $2 \rightarrow 4$ splitting is removed altogether but has not been worked out

Sudakov factors

- cross section differential in \boldsymbol{q}_{i} contains Sudakov logarithms
- can adapt Collins-Soper-Sterman formalism

> (originally developed for single Drell-Yan and similar proc's)
\rightsquigarrow include and resum Sudakov logs in k_{T} dependent parton distr's

- at leading double log accuracy: same Sudakov factor for singlet and octet distr's F_{1} and F_{8}
- for $q_{T} \sim \Lambda$
- Sudakov factors mix singlet and octet distr's

mixing only suppressed by $1 / N_{c}$

- generically Sudakov factors of same size for singlet and octet
- for $q_{T} \gg \Lambda$ and $|\boldsymbol{y}| \sim 1 / \Lambda$
- singlet F_{1} decouples from octet F_{8}
- octet distr'n has extra suppression by factor

$$
\begin{gathered}
\sim \exp \left[\text { const. } \alpha_{s} \log \frac{\left|\boldsymbol{z}_{i}\right|}{|\boldsymbol{y}|} \log \left(Q\left|\boldsymbol{z}_{i}\right|\right)\right] \\
\text { with }\left|\boldsymbol{z}_{i}\right| /|\boldsymbol{y}| \sim \Lambda / q_{T} \text { and } Q\left|\boldsymbol{z}_{i}\right| \sim Q / q_{T}
\end{gathered}
$$

Summary

- multiple hard interactions not power suppressed for cross section differential in $\left|\boldsymbol{q}_{i}\right| \ll Q$
- nontrivial spin and color structure interference in fermion number and quark flavor size of these effects presently unknown
- some simplification for transv. mom. $\left|\boldsymbol{q}_{i}\right| \gg \Lambda$
- collinear distributions as input
- enhancement of color singlet combinations further studies needed to make this quantitative
- need multi-parton distr's depending on transverse distance between partons
- for finite \boldsymbol{y} (not $\int d^{2} y$) multi-parton distr's evolve with simple sum of ordinary DGLAP kernels

