R&D Development of microstrip sapphire sensor prototypes for Gamma Beam Profiler LUXE (GBP LUXE).

Aim

The investigation is aimed to development of physical and technological bases of radiation hard microstrip single crystal sapphire sensors.

Application

The sensors as part of microstrip detector provides control of high-energy gamma-quanta beam profile, which is spatial distribution of gamma-quanta intensity over beam cross section with accuracy of few micrometers.

Objectives

1. Development of criteria and appropriate non-destructive methods for characterization and selection of sapphire wafers that is acceptable for microstrip sensor fabrication

1.1 Photocurrent (I_{ph}) mapping over area of the wafers having of 50 mm diameter or sizes of 60 mm ×48 m and thickness within range of 100-150 microns.

1.2. THz irradiation absorption mapping.

2. Development of method for estimation of electron mobility×lifetime value $(\mu \times \tau)_n$.

2.1. Measurement of charge collection efficiency (CCE) dependence on bias of pad sensors (single sensors with sizes of 3 mm \times 3 mm and i.e.) under irradiation with alpha - or $\delta e \pi a$ – particles 2.2 Measurement of photocurrent (Iph) dependence on bias of pad sensors (single sensors with

sizes of 3 mm×3 mm and i.e.) under irradiation with X-ray or electron beam.

3 Investigation of radiation hardness of sapphire sensors to irradiation of high energy beta-particles with energy of 0.5 MeV and dose up to 10 MGy.

4. Simulation of collected charge per strip and spatial resolution of sapphire microstrip sensor

- 4.1 Simulation of dose and energy deposition distribution into volume of the sensor
- 4.2 Simulation of 2D electric field distribution into volume of the sensor
- 4.3 Simulation of 2D CCE distribution into volume of the sensor.
- 4.4 Simulation of collected charge per strip.
- 5. Development and validation of microstrip detector prototypes
 - 5.1 4 channels prototypes (6 items)
 - 5.2 Full-size (192 channels) prototypes (6 items).
- 6. Testing of microstrip detector prototypes under X-ray or/and beta-particle irradiation
 - 6.1 Sensitivity
 - 6.2. Dynamic range
 - 6.3 Spatial resolution
 - 6.4 Radiation hardness

Results

- 1. Verification of compliance of microstrip sapphire sensor characteristics with the GBP LUXE requirements.
- 2. Criteria for selection of sapphire wafers that are optimal for GBP LUXE
- 3. Non-destructive methods for characterization of sapphire wafers
- 4. Technology of radiation hard microstrip sapphire sensors