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Outline and Disclaimer

What the lecture will cover:

– Monte Carlo methods: What and how.

– From integrals to integrands and back: integration and sampling.

– Some more advanced topics, modulo time constraints.

What the lecture certainly not covers:

– The art of (pseudo-) random number generation.

– Technical details of available methods/codes.

– MC methods outside HEP, in particular in statistical physics.
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A Travel Guide to Monte Carlo

If there are any questions, don’t hesitate to interrupt me.
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A Travel Guide to Monte Carlo

Getting started:

– Why go to Monte Carlo at all?

A first tour:

– Sampling by inversion.

– Dealing with many variables: hit-and-miss.

– From hits to weights and integrals.

For experienced visitors:

– Loading the dice: variance reduction.

– A first glimpse on VEGAS.

Additional tours for longer stays:

– MC methods for NLO & parton showers.
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Expectations to the Journey.

Simon Plätzer (DESY Theory Group) MC Methods 5 / 61



The Task, Physics Wise.

Given some cross section differential in all momentum components ...

– Calculate the total cross section σ.

– With arbitrary acceptance criteria (‘cuts’).

– Produce a sample of events (p1, ..., pn) with probability density

1

σ
dσ(p1, ..., pn) .

– Book histograms for arbitrary observables, and compare to data
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The Task, Technically.

Given a function p(x1, ..., xn),
and a volume V = {(x1, ..., xn) ∈ Rn|v(x1, ..., xn) = 0} ...

– Calculate

N(p,V ) =

∫
V

p(x1, ..., xn)dnx .

– Produce a sample of events (x1, ..., xn) ∈ V with probability density

1

N(p,V )
p(x1, ..., xn)dnx .

– Book histograms for arbitrary functions O(x1, ..., xn).
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Why go to Monte Carlo at all?

Well, we could just do numerical integrations,

N(p,V ) =

∫ Gauss,...

V
p(x1, ..., xn)dnx .

Don’t even need ‘events’, nor histograms, but calculate

dp

dO
=

∫
V

p(x1, ..., xn)δ(O − O(x1, ..., xn))dnx

the same way, and just plot into measured histograms.

So what?
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Why go to Monte Carlo at all?

There are n = 3k − 4 variables for k outgoing particles.

– Watch out for convergence of numerical integrations for n & 2.

Flexibility: Easily add or change observables O and cut definitions v .

– Would have to adapt the numerical integrations each time.

MC methods are the only feasible way to achieve the task.

We’ll see how ...
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Getting into Touch with MC Methods.

We’ll start off with drawing random variates in a single variable.

May seem unrelated to the problems we want to solve, yet:

– Gives a first feeling for what is going on.

– Often needed as helper for more efficient algorithms.
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How to do things with some probability?

Choose between two outcomes A and B with probabilities PA,B .
How to implement an algorithm selecting either one according to PA,B?

Have rnd() to return equally distributed random numbers r ∈ [0, 1].

r ← rnd()
if r < PA then

return A
else

return B
end if
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How to do things with some probability?

Choose between three outcomes A, B and C with probabilities PA,B,C .

r ← rnd()
if r < PA then

return A
else if r < PA + PB then

return B
else

return C
end if

Etc.
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Sampling by Inversion.

Suppose we got p(x) ≥ 0 and V = [a, b] to define a probability density

P(x)dx = θ(b − x)θ(x − a)
p(x)dx∫ b
a p(z)dz

from which we are to draw random variates.

We’ll assume that p is sufficiently simple such that

– we can calculate the integral of p, and

– we can solve ∫ x

a
p(z)dz = r

∫ b

a
p(z)dz

for x as a function of r ∈ [0, 1].
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Sampling by Inversion.

The algorithm generating events according to P(x) is simple:

r ← rnd()
x ← solution of∫ x
a p(z)dz = r

∫ b
a p(z)dz

return x
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Sampling by Inversion.

The algorithm generating events according to P(x) is simple:

dr = P(z)dz

We only solved a change of variables.
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Sampling by Inversion: Example.

Suppose we have p(x) = x on [0, 1]. Then solve x2

2 = r 1
2 .

Sampled
P(x)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

x

N
−

1
dN

/
dx
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Dealing with Many Variables: Hit-and-Miss.

Before trying many variables: What if we cannot invert the integral?
Suppose we know c ≥ p(x).

loop
r ← rnd()
x ← a + r(b − a)
r ′ ← rnd()
if r ′ < p(x)/c then

return x
end if

end loop

The frequency of hits in [x , x + dx ] is directly proportional to p(x).
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Dealing with Many Variables: Hit-and-Miss.

Before trying many variables: What if we cannot invert the integral?
Suppose we know c ≥ p(x).

loop
r ← rnd()
x ← a + r(b − a)
r ′ ← rnd()
if r ′ < p(x)/c then

return x
end if

end loop

Note that we did not have to know the normalization! [x , x + dx ] p(x)
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Dealing with Many Variables: Hit-and-Miss.

Given a function p(x1, ..., xn),
and a volume V = {(x1, ..., xn) ∈ Rn|v(x1, ..., xn) = 0} ...

Suppose we know c ≥ p(x1, ..., xn).
And a hypercube I = [a1, b1]× · · · × [an, bn] with V ⊂ I .

Define

pV (x1, ..., xn) =

{
p(x1, ..., xn) : v(x1, ..., xn) = 0

0 : otherwise
.
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Dealing with Many Variables: Hit-and-Miss.

pV (x1, ..., xn) =

{
p(x1, ..., xn) : v(x1, ..., xn) = 0

0 : otherwise

loop
for i = 1..n do

r ← rnd()
xi ← ai + r(bi − ai )

end for
r ′ ← rnd()
if r ′ < pV (x1, ..., xn)/c then

return (x1, ..., xn)
end if

end loop
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Remark.

Unless stated otherwise: Back to one variable.

Generalizations should be obvious now.

If not: Please ask!
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From Hits to Weights and Integrals.

Before trying many variables: What if we cannot invert the integral?
Suppose we know c ≥ p(x).

loop
r ← rnd()
x ← a + r(b − a)
r ′ ← rnd()
if r ′ < p(x)/c then

return x
end if

end loop

Note that we did not have to know the normalization!
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From Hits to Weights and Integrals.

Before trying many variables: What if we cannot invert the integral?
Suppose we know c ≥ p(x).

loop
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From Hits to Weights and Integrals.

We actually estimated the normalization, if we were counting hits:

∫ b

a
p(x)dx ≈

#hits

#hits + #misses
×c(a−b) .

In other words: We have just (approximately) calculated an integral!
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Weights, Averages, and Variances.

Let’s put the estimate onto a more waterproof ground.

Averaging p over [a, b] is connected to its integral,

〈p〉 =
1

b − a

∫ b

a
p(x) dx .

Now estimate the average by

– recording p’s value at random points xi ,

– for a total of N points:

〈p〉estimate =
1

N

N∑
i=1

p(xi ) .
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Weights, Averages, and Variances.

We’ll call wi = p(xi ) the weight of an event xi .
wi is a measure of how many hits we should expect in [xi , xi + dx ].

〈p〉estimate now got a well defined uncertainty:
We measure p at equally distributed, independent random points.

The variance of 〈p〉estimate is

σ2 [〈p〉estimate] =
1

N

 1

N

N∑
i=1

w2
i −

(
1

N

N∑
i=1

wi

)2
 .
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Monte Carlo Integrals.

By recording p’s value at random points xi , i = 1, ...,N we can
approximatley calculate its integral:

∫ b

a
p(x) dx = (b − a)〈p〉estimate ± (b − a)σ [〈p〉estimate]
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Monte Carlo Integrals: Example.

Integrate p(x) = x2 on [0, 1].

200000 400000 600000 800000 1000000
0.99

0.995

1.0

1.005

estimate/exact

N
200000 400000 600000 800000 1000000

10−4

10−3

10−2

relative error

N

Uncertainty drops as 1/
√

N. Mind the independent measurements.
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Monte Carlo Integrals: Example.

Integrate p(x) = x2 on [0, 1].

200000 400000 600000 800000 1000000
0.99

0.995

1.0

1.005

estimate/exact

N
200000 400000 600000 800000 1000000

10−4

10−3

10−2

relative error

N

Doesn’t really converge to the true value, right?
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Monte Carlo Integrals: Example.

Integrate p(x) = x2.

200000 400000 600000 800000 1000000
0.99

0.995

1.0

1.005

estimate/exact ± relative error

N

Even worse: Error band just scratches true value for large N.
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Monte Carlo Integrals.

Mind the choice of your random number generator!

Never, ever use things like:

rnd(), drand48() ...
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Monte Carlo Integrals: Example.

Integrate p(x) = x2.

200000 400000 600000 800000 1000000
0.99

0.995

1.0

1.005

estimate/exact ± relative error

N

Same thing, better random number generator.
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How does this connect to hits and misses?

Assign weights

– wi = c to any ‘hit’ xi , and

– wj = 0 to any ‘miss’ xj .

Then ∫ b

a
p(x)dx ≈ #hits

#hits + #misses
× c(a− b)

as conjectured.

But now we know how accurate this estimate is.
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How does this connect to hits and misses?

We still miss an explanation for whit = c .

We have actually ‘measured’ p(x) in units of c ...

– by accepting N × p(x)/c hits in [x , x + dx ], thus

– recording the value of p(x)/c by the number of hits.

For any hit we therefore need to multiply by the unit c we’ve chosen.

Just a scaling of variables:∫ b

a
p(x)dx = c

∫ b

a

p(x)

c
dx

True changes of variables when trying to cheat in the casino ...
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A Travel Guide to Monte Carlo

Time for questions.
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Uncertainties, continued.

Mind the integral’s uncertainty,

σ2 [〈p〉estimate] = 〈σ2 [p]〉estimate .

If p has large variance, need a very large N for a reasonable uncertainty.

Connected to this is an
inacceptable efficiency of
hit-and-miss,

ε =
#hits

#hits + #misses
� 1 .
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Loading the Dice: Variance Reduction.

We’ve been honest gamblers, using equally distributed random numbers.

Now we’ll start to cheat.

First set some notation,
〈p〉 → 〈p〉1 ,

where in general

〈p〉r =

∫ b

a
p(x)r(x)dx .
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Loading the Dice: Variance Reduction.

The basic ingredients to variance reduction:

– A constant function has zero variance.

– And we always have

〈p〉1 =
〈p

r

〉
r
.

So, ideally
〈p〉1 = 〈1〉p

with zero variance ???
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Loading the Dice: Variance Reduction.

What does
〈p

r

〉
r

actually mean?

– A change of variables,

p(x)dx = p(x(R))
dx(R)

dR
dR

with r(x)dx = dR.
Record p/r at points inside the transformed volume.

– If r(x) is normalized to define a probability density:
Record p/r at points distributed with density r .

To arrive at 〈1〉p we would actually have to know the integral.
Then the uncertainty is – of course – zero.
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Loading the Dice: Variance Reduction.

The best we can hope for is finding a r , which is very similar to p,

p(x)

r(x)
≈ constant .

And sufficiently simple, such that we can distribute points with a
probability density defined by r .

Simon Plätzer (DESY Theory Group) MC Methods 38 / 61



Loading the Dice: Variance Reduction.

This also helps with the hit-and-miss efficiency:

If we know c such that c r(x) ≥ p(x), we can

– Propose points with density defined by r , and

– accept a hit x with probability p(x)
c r(x) .
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Loading the Dice: Variance Reduction.

Bottom line:

– Generate more points where p has large fluctuations.

– Generate less points where p is essentially constant.

– Divide out the bias introduced thereby.

A bit of terminology:

What we got to know here is known as ‘importance sampling’.
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Loading the Dice: Variance Reduction.

A bit of terminology:

There is also ‘stratified sampling’.

This is just another way of
implementing a r(x) made up
of step functions.
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Variance Reduction: Example.

Integrate p(x) = x2 on [0, 1]. Importance sampling with r(x) = x .

200000 400000 600000 800000 1000000
0.99

0.995

1.0

1.005

estimate/exact ± relative error

N
200000 400000 600000 800000 1000000

0.99

0.995

1.0

1.005

estimate/exact ± relative error – with importance sampling

N
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Detour: From Integrals and Weights to Hits.

From MC integration we obtain a sample of weighted events, (xi ,wi ).

For event generation, we are interested in unweighted events, (xi , c).
Recap that wi is a measure of the frequency of events in [xi , xi + dx ].

To get to unweighted events,

– find the maximum weight wmax,

– keep each weighted event (xi ,wi ) with probability wi/wmax, and

– assign common weight c = N(p,V )/Nuw to Nuw accepted events.

NB: For a proper variance reduction, the weight’s variance is small
compared to the average weight: efficient ‘unweighting’.
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A First Glimpse on VEGAS.

For this part we’ll get back to many variables.

What is VEGAS? [G.P. Lepage, J.Comput.Phys.27:192,1978]

– An algorithm for stratified sampling.

– In a very clever way to deal with a huge number of variables.

– Adaptive: Adjust r(x) in each iteration to get smaller variance.

Implementations: Lepage’s listing, MONACO, GSL, dVegas, ...
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A First Glimpse on VEGAS.

The troubles with many variables.

Suppose we want to make up r(x1, ..., xn) of step functions.
Divide each variable range [ai , bi ] into k intervals

[ai = xi ,0, xi ,1], [xi ,1, xi ,2], ..., [xi ,k−1, bi = xi ,k ] ,

and let

r(x1, ..., xn) =

k∑
i1,...,in=1

ri1,...,inθ(x1,i1 − x1)θ(x1 − x1,i1−1) · · · θ(xn,in − xn)θ(xn − xn,in−1) .
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A First Glimpse on VEGAS.

The troubles with many variables.

We would have to keep track of kn values ri1,...,in .

Suppose we have a 2→ 4 scattering at a hadron collider:
n = 3× 4− 4 + 2 = 10.

And figure out that k ∼ 4 looks reasonable (mostly way too small!).

A double is 64 Bits = 8 Bytes:

410 × 8 Bytes = 8 GBytes

Not an option.
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A First Glimpse on VEGAS.

Suppose we want to make up r(x1, ..., xn) of step functions.
Divide each variable range [ai , bi ] into k intervals

[ai = xi ,0, xi ,1], [xi ,1, xi ,2], ..., [xi ,k−1, bi = xi ,k ] ,

and let
r(x1, ..., xn) = r1(x1) · · · rn(xn)

with

ri (xi ) =
k∑

j=1

ri ,jθ(xi ,j − xi )θ(xi − xi ,j−1) .

n × k values to store instead of kn.
Now need 320 Bytes instead of 8 GBytes!
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A First Glimpse on VEGAS.

Keep number of points per interval fixed.
Trade of ri ,j to keep track of

vi ,j =
1

(b1 − a1) · · · (xi ,j − xi ,j−1) · · · (bn − an)
×∫ b1

a1

dx1 · · ·
∫ xi,j

xi,j−1

dxi · · ·
∫ bn

an

dxn p(x1, ..., xn) ,

i.e. the average weight in [xi ,j−1, xi ,j ] projected onto variable i .
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A First Glimpse on VEGAS.
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A First Glimpse on VEGAS.

The adaptive algorithm:

– Make a first run (‘iteration’) with N points.

– Adjust the xi ,j such as to have higher density, where vi ,j are large.

– Repeat for M iterations.
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A First Glimpse on VEGAS.

– Adjust the xi ,j such as to have higher density, where vi ,j are large.

This criterion is actually not unique, and rather complicated.
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A Travel Guide to Monte Carlo

Time for questions.

Simon Plätzer (DESY Theory Group) MC Methods 52 / 61



MC Methods for NLO & Parton Showers.

Negative ‘probability densities’:

– subtraction terms.

Markov processes:

– next parton shower emission.
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Negative ‘probability densities’:

– subtraction terms.

Markov processes:

– next parton shower emission.
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Negative ‘Probability Densities’

Parts of a NLO differential cross section can be negative.

Can we still make sense of this in terms of MC methods?

If we just want to calculate an integral, there’s no problem.
We just have that some of the weights wi are negative.

But what about ‘events’?
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Negative ‘Probability Densities’

There’s a very simple way out of this:

If p(x) goes negative for some values of x ...

– Generate events according to |p(x)|.
– For x with p(x) > 0 add an event to histogram bin.

– For x with p(x) < 0 subtract an event from histogram bin.

In other words:

Unweight from wi to c × sign(wi ) with
acceptance probability |wi |/max|wi |.
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Markov Processes.

Technically, parton showers are Markov processes.

Will not go into details, just state the problem:

Draw events from a probability density

dSp(µ, q|Q)

dq
= ∆p(µ|Q)δ(q − µ) + p(q)∆p(q|Q)θ(Q − q)θ(q − µ)

where

∆p(q|Q) = exp

(
−
∫ Q

q
P(t)dt

)
.
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Markov Processes.

How to achieve this?

First note, that we’re truly facing a probability density,∫ Q

µ

dSp(µ, q|Q)

dq
dq = 1 .

We just use sampling by inversion, solving for q in∫ q

µ

dSp(µ, t|Q)

dt
dt = ∆p(q|Q) = rnd() .
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Markov Processes.

There’s a caveat:
∆p(q|Q) = rnd()

has no solution if rnd() returned a value smaller than ∆p(µ|Q).

This is precisely giving us the contribution multiplying the δ-function.
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Markov Processes.

What if we can’t solve ∆p(q|Q) = rnd() for q?

There’s something like a hit-and-miss algorithm,
known as the ‘Sudakov veto algorithm’.

Unfortunately, we’ll have to leave Monte Carlo now ...
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Memories from Monte Carlo
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Hands on a MC Event Generator

Everything outlined in the lecture more or less
feeds into a Monte Carlo event generator.

We’ll now get to know one of these: Herwig++.
[M. Bähr, S. Gieseke, M.A. Gigg, D. Grellscheid, K. Hamilton, O. Latunde-Dada, SP,

P. Richardson, M.H. Seymour, A. Sherstnev, B.R. Webber, Eur.Phys.J.C58:639-707,2008]

(After coffee...)
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