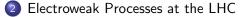
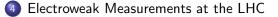
Standard Model Electroweak Processes at the LHC


Anja Vest – TU Dresden

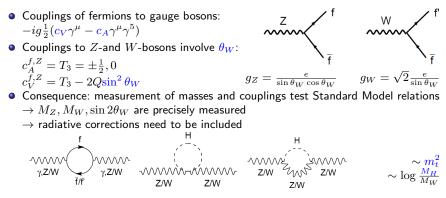
Introductory School to Particle Physics DESY Hamburg


February 22, 2011

3 LHC Detectors

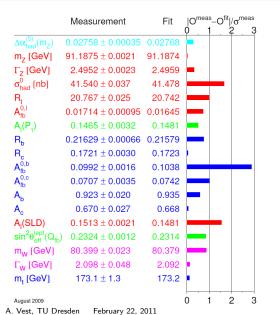
5 Summary

Snapshot of the electroweak Standard Model


- Electroweak Standard Model:
 - developed by Glashow, Salam and Weinberg in the 1960s
 - $\bullet\,$ unified gauge theory of QED and weak interactions
 - \rightarrow gauge group $SU(2)_L \times U(1)_Y$
- Matter particles are fermions
 - leptons and quarks
 - left-handed doublets
 - right-handed singlets
- Interactions are mediated by gauge bosons
 - W^{\pm} and Z bosons, photons
 - mixing of neutral fields
 - weak mixing angle θ_W
 - non-abelian theory: gauge bosons can couple to themselves
- Higgs mechanism provides masses for fermions and bosons

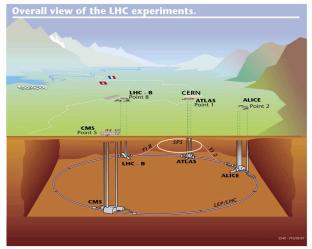
 $\begin{pmatrix} \nu_{e} \\ e^{-} \end{pmatrix}_{L} \begin{pmatrix} \nu_{\mu} \\ \mu^{-} \end{pmatrix}_{L} \begin{pmatrix} \nu_{\tau} \\ \tau^{-} \end{pmatrix}_{L} \\ e^{-}_{R} & \mu^{-}_{R} & \tau^{-}_{R} \\ [\nu_{e,R} & \nu_{\mu,R} & \nu_{\tau,R}] \\ \begin{pmatrix} u \\ d \end{pmatrix}_{L} \begin{pmatrix} c \\ s \end{pmatrix}_{L} \begin{pmatrix} t \\ b \end{pmatrix}_{L} \\ u_{R} & c_{R} & t_{R} \\ d_{R} & s_{R} & b_{R} \end{pmatrix} \\ \begin{pmatrix} A \\ Z \end{pmatrix} = \begin{pmatrix} \cos \theta_{w} & \sin \theta_{w} \\ -\sin \theta_{w} & \cos \theta_{w} \end{pmatrix} \begin{pmatrix} B \\ W_{3} \end{pmatrix}$

Electroweak measurements


- Masses of gauge bosons: M_W, M_Z
- Masses of fermions: the most important is the mass of the top quark m_t
- Important prediction of the Standard Model (to lowest order):

$$\frac{M_W}{M_Z} = \cos \theta_W$$
 or $\rho = \frac{M_W}{M_Z \cos \theta_W} = 1$

A. Vest, TU Dresden February 22, 2011

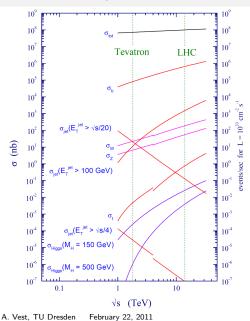

Test of the electroweak Standard Model

- Bars show difference between measurement and theory
- Relatively good agreement of measurements with predictions
- But room for new physics (SUSY, ...)

Physics at the LHC

The proton-proton collider LHC and the 4 experiments:

LHC luminosities and centre-of-mass energies:

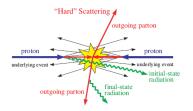

 2010/2011:
 7 TeV max. energy, up to 1 fb⁻¹

2012:

- $\sim 8~{\rm TeV}$ and $5~{\rm fb}^{-1}?$
- Later:

13 - 14 TeVultimate energy, $50 - 70 \text{ fb}^{-1}$ until 2016, 3000 fb^{-1} until 2030

Overview of production rates at the LHC

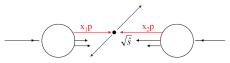

Typical production cross-sections at Tevatron and the LHC:

- Inelastic *pp* scattering dominates
 → "minimum bias"
- QCD processes have large cross-sections
 - \rightarrow 2-jet & 3-jet events
- Many events with W and Z bosons
- Top-pair production
- New particles: Higgs, SUSY, ...
- 13 orders of magnitude
- Number of physics events:

$$N = L \cdot \sigma$$

L = luminosity $\sigma =$ cross-section

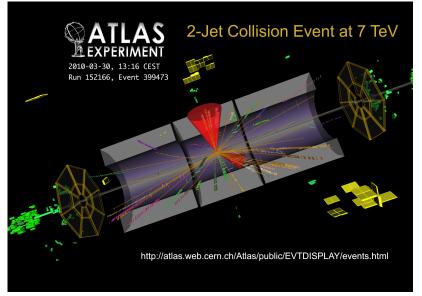
Properties of *pp*-collision events



- *pp* collisions at the LHC mostly result in peripheral events with small momentum transfer: inelastic *pp* scattering
 - \rightarrow "minimum-bias" events \rightarrow pile-up
- Many hadrons produced from proton remnants: "underlying event"

 In rare cases: hard scattering of the protons constituents (quarks and gluons) with large (transverse) momentum transfer (scattering at large angle)

 $qq \rightarrow qq, \ gg \rightarrow gg, \ gq \rightarrow gq$


 Quarks and gluons carry fractions x₁, x₂ of the proton momentum → centre-of-mass energy of quark/gluon collisions is < 7 TeV

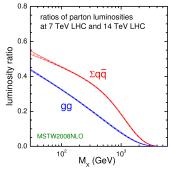
Strategy:

identify interesting physics with high- p_T leptons, photons and jets or missing transverse energy (MET)

Properties of *pp*-collision events

Effect of event pile-up

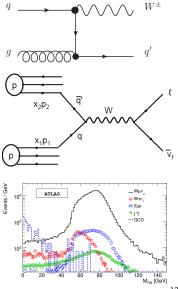
Number of simultaneous pp reactions increase with luminosity:


 $10^{32}cm^{-2}s^{-1}$ $10^{33}cm^{-2}s^{-1}$ $10^{30}cm^{-2}s^{-1}$

 $10^{36} cm^{-2} s^{-1} \\ 10^{35} cm^{-2} s^{$

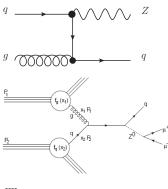
At nominal LHC luminosity of $10^{34} cm^{-2} s^{-1}$: about 25 events per bunch crossing A. Vest, TU Dresden February 22, 2011

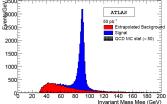
Typical event rates of SM processes at the LHC


Process	σLO @ 7 TeV [pb]	σLO @ 14 TeV [pb]	Evts (7 TeV) in 200 pb ⁻¹	7 TeV/ 14 TeV
QCD $P_T > 100 \text{ GeV}$	3.2 • 10 ⁵	1.4 • 106	64 • 10 ⁷	0.2
Z inclusive	2.4 • 10 ⁴	5.7 • 10 ⁴	$5\boldsymbol{\cdot} 10^6~(3\%~Z\rightarrow \ell\ell)$	0.4
W inclusive	9.5 • 10 ⁴	2.1 • 10 ⁵	$1.9 \bullet 10^7 \; (11\% \; W \rightarrow \ell v)$	0.5
Top pairs	84	470	17000	0.2
H(m = 150 GeV)	4	16	800	0.3

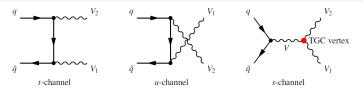
\boldsymbol{W} boson production at the LHC

Physics measurements:


- Cross-section measurement in $W \rightarrow e\nu, \mu\nu, \tau\nu$ channels (hadronic final states difficult to select at the LHC)
- Measurement of the *W* boson mass and width
- PDF constraints
- MET calibration from $W \to \mu \nu$
- Background to search channels (W + jets)

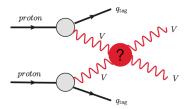


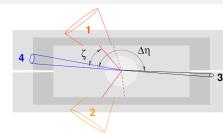
\boldsymbol{Z} boson production at the LHC

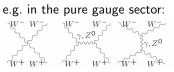

Physics measurements:

- Cross-section measurement in $Z \rightarrow ee, \mu\mu, \tau\tau$ channels
- Detector calibration: reconstruction, trigger and isolation efficiencies, resolution, alignment
- PDF constraints
- $\sin 2\theta_W$ from forward-backward asymmetry in $Z \rightarrow ee$ events
- Measurement of systematic uncertainties for other processes
- Background to search channels
 (Z + jets)

Di-boson production at the LHC




- Measurement of $WW, ZZ, W\gamma, Z\gamma$ final states
- Determination of production cross-sections
- $\bullet\,$ Measurement of the couplings between gauge bosons \rightarrow prediction of the SM
- Triple-gauge boson vertex
- Examples of cross-sections:


Diboson mode	Conditions	$\sqrt{s} = 14 \text{ TeV}$
		$\sigma[pb]$
W ⁺ W ⁻ [15]	W-boson width included	111.6
$W^{\pm}Z$ [15]	Z and W on mass shell	47.8
ZZ [15]	Z's on mass shell	14.8
$W^{\pm}\gamma$ [16]	$E_T^{\gamma} > 7 \text{ GeV}, \Delta R(\ell, \gamma) > 0.7$	451
$Z\gamma$ [17]	$E_T^{\gamma} > 7 \text{ GeV}, \Delta R(\ell, \gamma) > 0.7$	219

Factor 100-1000 smaller than for W, Z production

Vector Boson Scattering (VBS) at the LHC

Feature of VBS: tagging jets \rightarrow analysis of the process:

$$qq \to q_{\rm tag} q_{\rm tag} VV$$

rapidity gap between jets (no color flow)

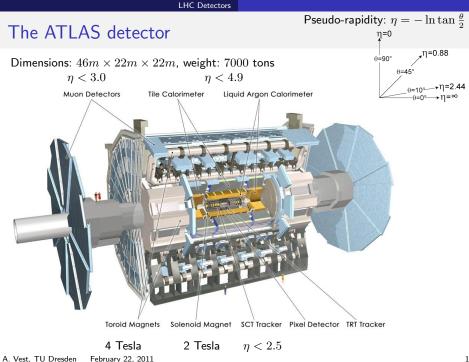
 \rightarrow Measurement of WW, WZ, ZZ final states:

$WW \rightarrow l\nu l\nu$	$WZ \rightarrow l\nu ll$	$ZZ \rightarrow llll$
	$WZ \rightarrow l \nu q q$	$ZZ \rightarrow ll \nu \nu$
$WW \to qql\nu$	$WZ \rightarrow qqll$	$ZZ \rightarrow llqq$

A. Vest, TU Dresden February 22, 2011

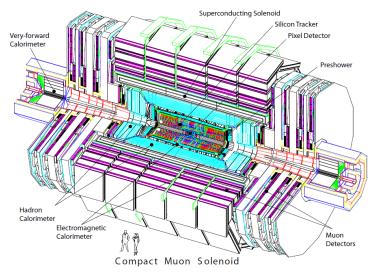
LHC Detectors: ATLAS and CMS

Challenges for LHC detectors:

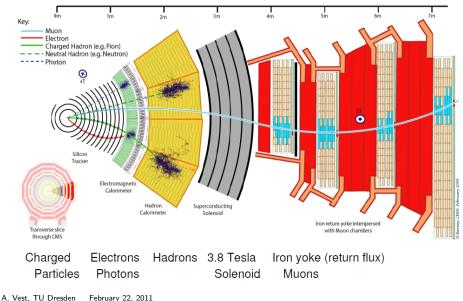

- High collision rate: 25 ns proton bunch-crossing
- Up to 25 minimum-bias events/crossing \rightarrow pile-up
- Radiation hardness \rightarrow detectors and electronics tolerate 10^{15} particles/cm²
- $\bullet~$ High granularity \rightarrow isolate interesting leptons/photons/jets from pile-up
- Very good angular coverage \rightarrow measure missing energy (neutrinos, SUSY)
- Fast trigger with high background suppression rate (~ 1 accepted event/ 10^6)

Performance goals:

- Get high efficiency for particle detection
- Suppress background from QCD jets


Object			
		suppr.	
electrons	>70%	100000	Z,W,top,H→4ℓ,
photons	80%	1000	Н→үү
muons	>97% for p _T $>1GeV$		H→4ℓ,
tau leptons	50%	100	H/A→ττ, SUSY,…
b-jets	50%	100	top, H→bb,SUSY,

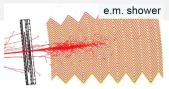
A. Vest, TU Dresden February 22, 2011



The CMS detector

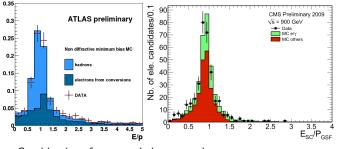
Dimensions: $22m \times 15m \times 15m$, weight: 12500 tons

Particle identification



Particle identification

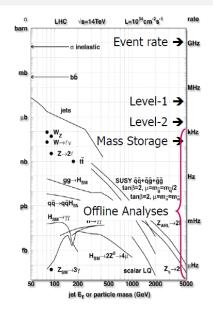
E.g. electron:


- Energy and shower shape measured in calorimeter
- Track matched to energy cluster using angles

$$\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$$

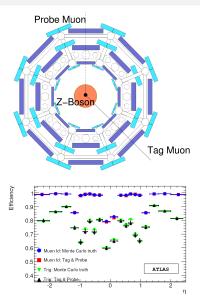
• Compare calorimetric energy and momentum measurement in tracker: $E/p\approx 1$

• No leakage of energy into hadronic calorimeter

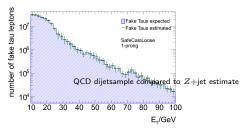


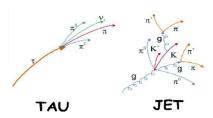
 \rightarrow Combined performance is important!

From detector to physics: the trigger


Bunch crossing	40 MHz
$\sigma_{ m total}$	70 mb
Event rate	$\sim 1~{ m GHz}$
Number of events/BC	~ 25
Number of particles/event	~ 1500
Event size	$\sim 1.5~{ m MB}$
Mass storage rate	\sim 200 Hz

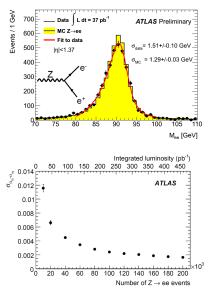
- Need to have trigger of high performance
 → 6 orders of rate reduction
 → complex events and 140 M channels
- Level-1: hardware based at 40 MHz
- Level-2: software based at 100 kHz
- Level-3: event filter at 3 kHz
- Storage at 200 Hz


Detector performance with \boldsymbol{Z} bosons


- Commonly applied method to measure performance in data:
 - \rightarrow "tag & probe" method
- Example: Measurement of muon identification efficiency with $Z \rightarrow \mu\mu$ events
 - Identify triggered and well measured muon: → tag
 - Use of Z decay kinematics to find the 2nd reconstructed muon:
 - \rightarrow probe
 - If 2nd (probe) muon passed selection
 → muon identification efficiency
 - similar for muon trigger and muon reconstruction efficiency
- Many more examples: $Z \rightarrow ee, J/\Psi \rightarrow ee, ...$

Detector performance with Z bosons

- Identification of hadronically decaying τ leptons
 - Collimated hadronic jet
 - 1 or 3 particle tracks
- Large QCD background: τ may look like hadronic jets from quarks and gluons
- Estimation of jets misidentified as a τ with $Z(\rightarrow ll)$ + jet events

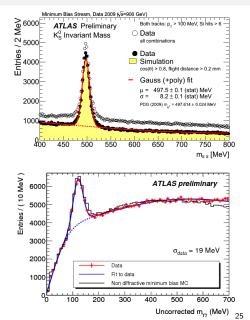

τ^- decay mode	BR %		- 20
$e^- \bar{v}_e \bar{v}_{\tau}$	17.85	leptonic	
$\mu^- \bar{v}_\mu \bar{v}_\tau$	17.36		
$\pi^- \bar{v}_{ au}$	10.91	hadronic	ר ^י
$\pi^-\pi^0 \bar{v}_{\tau}$	25.52	1-prong	700/
$\pi^{-}2\pi^{0}\bar{\nu}_{\tau}$	9.27		72%
$\pi^{-}3\pi^{0}\bar{v}_{\tau}$	1.04		
$K^- \bar{v}_{\tau}$ + Neutrals	1.57		
$\pi^-\pi^+\pi^-\bar{v}_\tau$	9.32	hadronic	
$\pi^-\pi^+\pi^-\pi^0\bar{\nu}_{\tau}$	4.61	3-prong	23%
$K^-\pi^+\pi^-\bar{v}_{\tau}$ + Neutrals	0.48		23%

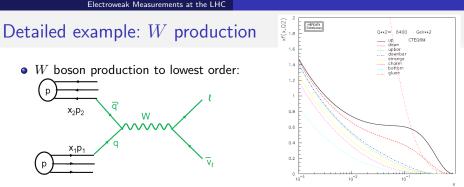
Detector performance with Z bosons

- Reconstruct pairs of electrons and positrons in the detector
- Measure the invariant mass of electron and positron ${\cal M}_{ee}$
- The mass spectrum should peak at the Z boson mass M_{Z}
- Line-shape modelled with Breit-Wigner distribution:

$$BW(M) \sim \frac{M^2}{(M^2 - M_Z^2)^2 + \Gamma_Z^2 M^4 / M_Z^2}$$

- Use the Z mass constraint from LEP $M_Z = 91.1875$ GeV to calibrate the energy scale of the calorimeter
- E.g. constant term of the energy resolution: 140 k $Z \rightarrow ee$ events needed to reach 0.2%

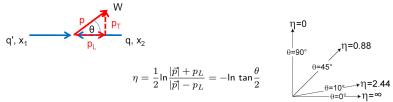

Detector performance with first physics data


• Tracking performance using K_S mesons:

• Calorimeter performance with $\pi^0 \rightarrow \gamma \gamma$

Peak value agrees with pion mass to $1\%(1.5~{\rm MeV})$

Resolution is 19 $MeV(\sim 2\%)$


- Quarks carry fractions x_1, x_2 of the proton momentum
- The probability to find a parton i with a given energy fraction x in a proton is given by the parton distribution function f_i(x, Q²)
- It is easy to calculate that the mass of the object produced (e.g. a W) is given by $\sqrt{\hat{s}} = \sqrt{x_1 x_2 s}$ with s = centre-of-mass energy squared
- The production cross-section can then be written as

$$\sigma = \sum_{i,j} \int \hat{\sigma}_{ij}(\hat{s}) \int_0^1 \int_0^1 f_i(x_1) f_j(x_2) \delta(\hat{s} - x_1 x_2 s) dx_1 dx_2 d\hat{s}$$

A. Vest, TU Dresden February 22, 2011

W production kinematics

• At hadron machines the scattering angle *θ* relative to the beam axis is usually given in terms of pseudo-rapidity:

 In a simplified picture, x₁ and x₂ are related to the pseudorapidity of the boson with mass M:

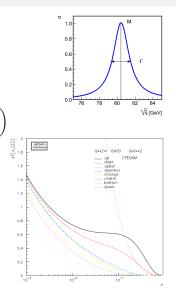
$$x_{1,2} = \frac{M}{\sqrt{s}}e^{\pm\eta}$$

• Examples for M = 80.4 GeV and $\sqrt{s} = 7$ TeV:

 $\begin{array}{rcl} \eta=0 & \rightarrow & x_1=x_2\approx 0.01 \\ \eta=0.88 & \rightarrow & x_1\approx 0.03 \ \text{ and } \ x_2\approx 0.005 \\ \eta=3.0 & \rightarrow & x_1\approx 0.23 \ \text{ and } \ x_2\approx 0.0006 \end{array}$

 At different scattering directions, different regions of the parton distribution functions are probed

W differential cross-section

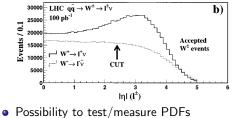

• If one assumes that the W boson resonance has zero width $(\Gamma_W \approx 0)$ $\hat{\sigma}_{ij}(\hat{s}) = \sigma_{ij}\delta(\hat{s} - M^2)M^2$ with $\sigma_{ij} = \sigma(ij \rightarrow W)$ one can perform the integrals easily and one obtains:

$$\frac{d\sigma}{d\eta}(pp \to X) \approx \sum_{i,j} \sigma_{ij} \frac{M^2}{s} f_i\left(\frac{M}{\sqrt{s}}e^{\eta}\right) f_j\left(\frac{M}{\sqrt{s}}e^{-\eta}\right)$$

with the parton density functions $f_i(Q^2, x)$

• Consequence: one can calculate the differential cross-section by simply multiplying the PDFs (and by summing over the possible intermediate states *ij*)

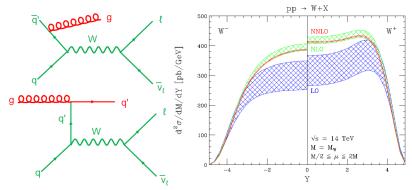
Plots and numerical tables: http://durpdg.dur.ac.uk/HEPDATA/PDF Try it yourself! (works also for Higgs at LO, ...)


W differential cross-section

$$\frac{d\sigma}{d\eta}(pp \to X) \approx \sum_{i,j} \sigma_{ij} \frac{M^2}{s} f_i\left(\frac{M}{\sqrt{s}}e^{\eta}\right) f_j\left(\frac{M}{\sqrt{s}}e^{-\eta}\right)$$

• Example: $u + \bar{d} \rightarrow W^+$ and $\bar{u} + d \rightarrow W^-$:

$$\sigma(u+\bar{d}\to W^+)=\sigma(\bar{u}+d\to W^-)=\sigma_W$$


- anti-u and anti-d PDFs are about the same (sea-quarks)
- at $\eta = 3.0 \ (x_1 \approx 0.23, x_2 \approx 0.0006)$ the *u* and *d*-PDF differ by a factor of 2 (valence quarks) $\rightarrow W^+$ production is enhanced with respect to W^-

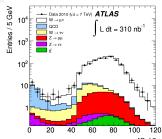
M. Dittmar et al., Phys. Rev. D 56 (1997) 7284

W + jet production

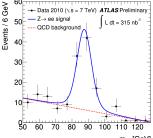
- There are corrections to the lowest order description, e.g. due to gluon radiation
- Corrections are next-to-leading order (NLO) in α_s or even NNLO, N³LO, ...
 - ightarrow W + jet production

• Theoretical uncertainties are typically reduced when going to higher order calculations

\boldsymbol{W} and \boldsymbol{Z} production cross-section


- W selection:
 - lepton with $p_T > 20 \text{ GeV}$
 - $MET > 25 \text{ GeV} \rightarrow \text{neutrino}$
 - W mass would be

$$M_W \approx \sqrt{E^l E^\nu (1 - \cos \alpha(l, \nu))}$$


but E^{ν} and angle cannot be measured \rightarrow transverse mass: $M_T > 40 \text{ GeV}$

$$M_T \approx \sqrt{p_T^l p_T^{\text{miss}} (1 - \cos \Delta \phi(p_T^l, p_T^{\text{miss}}))}$$

- Z selection:
 - isolated leptons with $p_T > 20 \text{ GeV}$
 - $66 < M_{ll} < 116 \text{ GeV}$
- Background at 10% level (QCD)
- Stat. uncertainty $\sim 1/\sqrt{N}$ will be very small
- Systematics will dominate: background uncertainties, luminosity and theory (PDF, gluon radiation, underlying event,...)

m_T [GeV]

m_{ee} [GeV]

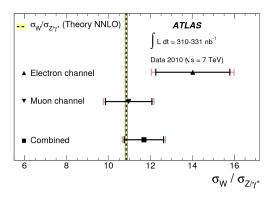
W and Z production cross-section

Production cross-sections for W and Z bosons times the branching ratios for decays into leptons:

$$\sigma_{W(Z)}^{\text{tot}} \cdot BR(W(Z) \to l\nu(ll)) = \frac{N_{W(Z)}^{\text{sug}}}{A_{W(Z)} \cdot C_{W(Z)} \cdot L_{W(Z)}}$$

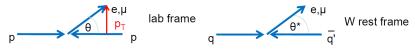
- N_W^{sig} and N_Z^{sig} : numbers of background-subtracted signal events
- A_W and A_Z : fiducial acceptances \rightarrow fraction of decays satisfying the geometrical and kinematical constraints at the generator level (defined before QED FSR)
- C_W and C_Z :

 $\frac{\# \text{ generated events which pass the final selection requirements after reconstruction}}{\# \text{ generated events within the fiducial acceptance}}$

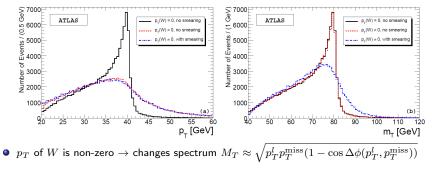

 \to include the efficiencies for triggering, reconstructing, and identifying the W and Z boson decays falling within the acceptance

• L_W and L_Z : integrated luminosities for the channels of interest

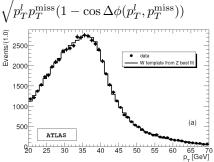
\boldsymbol{W} and \boldsymbol{Z} production cross-section


Production cross-sections for W and Z bosons times the branching ratios for decays into leptons:

$$\sigma_{W(Z)}^{\text{tot}} \cdot BR(W(Z) \to l\nu(ll)) = \frac{N_{W(Z)}^{\text{sig}}}{A_{W(Z)} \cdot C_{W(Z)} \cdot L_{W(Z)}}$$


M_W measurement

• Kinematics of the $W \rightarrow l\nu_l$ decay \rightarrow only the lepton is measured in the detector:


• Differential decay rate in the lab frame can be traced back to decay rate in rest frame: $\frac{dN}{dp_T} = \frac{2p_T}{M_W} \frac{1}{\sqrt{\left(\frac{M_W}{2}\right)^2 - p_T^2}} \frac{dn}{d\cos \theta^*}$

Jacobian factor is singular at $p_T = \frac{M_W}{2} \rightarrow Mass peak$ in p_T spectrum

M_W measurement

- Fit spectra of lepton p_T and $M_T\approx$
- Lepton energy scale from Z events
- Adjust Monte-Carlo samples with different M_W to fit best to data spectrum
- Most sensitive region is upper edge of the Jacobian peak (~ 40 GeV)

- Statistical uncertainty: in $\sim 30 \text{ pb}^{-1}$ is $\sim 60 \text{ MeV}$ in $W \to \mu\nu$ and $W \to e\nu$ channel
- Systematics:

lepton energy scale 110 MeV and 200 MeV due to W recoil, p_T^W

- "warm-up" for the ultimate 15 MeV precision $\rightarrow 10-20 \text{ fb}^{-1}$
- W mass precision today: 23 MeV (LEP+Tevatron)

Couplings between gauge bosons

- Non-abelian nature of SM predicts triple gauge boson couplings (TGC)
- Coupling strength in the SM:

 $g_{WW\gamma} = e, \quad g_{WWZ} = e \cot \theta_W$

- Measure these couplings and test for anomalous contributions
- Effective Lagrangian is used to model these $(V = \gamma \text{ or } Z)$:

$$L/g_{WWV} = ig_1^V (W_{\mu\nu}^* W^{\mu} V^{\nu} - W_{\mu\nu} W^{*\mu} V^{\nu}) + i\kappa^V W_{\mu}^* W_{\nu} V^{\mu\nu} + \frac{\lambda^V}{M_W^2} W_{\rho\mu}^* W_{\nu}^{\mu} V^{\nu\rho}$$

in the SM: $g_1^{\gamma} = g_1^Z = 1$ $\kappa^{\gamma} = \kappa^Z = 1$ $\lambda^{\gamma} = \lambda^Z = 0$

At LHC the di-boson decays to electrons and muons will be measured:

 \rightarrow high p_T leptons and photons, Z mass and transverse mass constraints • Anomalous couplings between ZZZ and ZZ γ are studied, too (do not exist in SM)

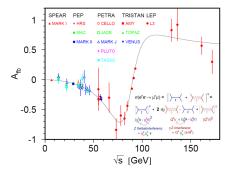
A. Vest, TU Dresden February 22, 2011

 V_{2}

q

Weak mixing angle measurement at the LHC

- Z boson production at LHC is the "inverse" of the LEP process LHC: $q\bar{q} \rightarrow Z/\gamma^* \rightarrow e^+e^-$ LEP: $e^+e^- \rightarrow Z/\gamma^* \rightarrow q\bar{q}$
- In the Z rest frame: measurement of forward-backward asymmetry $A_{FB} = \frac{N_F N_B}{N_D + N_D}$


- A_{FB} depends on Z-to-fermion couplings: $A_{FB} = A_{FB}(c_V^f, c_A^f) = A_{FB}(\sin^2 \theta_W)$
 - ightarrow precise measurement of $\sin^2 heta_W$

$$\begin{split} \delta \sin^2 \theta_W &= 1.6 \cdot 10^{-4} \\ \delta M_W / M_W &= 2.8 \cdot 10^{-4} \\ \delta M_Z / M_Z &= 0.2 \cdot 10^{-4} \end{split}$$

 \rightarrow test the Standard Model:

$$\rho = \frac{M_W}{M_Z \cos \theta_W} = 1 + \Delta \rho (\text{rad.corr.})$$

A. Vest, TU Dresden February 22, 2011

Weak mixing angle measurement at the LHC

• LEP was a e^+e^- collider with symmetric beam energies automatically in Z rest frame • Quark-guark system at LHC has varying longitudinal momentum \rightarrow depends on share between x_1 and x_2 "Collins-• A trick has to be done: we know the Z decays to $e^+e^ \rightarrow$ the reference direction is the bi-section between e^+ and $e^ \rightarrow$ go into the e^+e^- rest frame = Z boson rest frame • Good enough approximation to measure ATLAS the asymmetry 3000 $A_{FB} = b(a - \sin^2 \theta_{eff}^l)$ 2500 2000 • LHC expects a precision of $\delta \sin^2 \theta_W = 3 \cdot 10^{-4}$ at 100 fb⁻¹ and includes forward detectors • Compare to LEP: $\delta \sin^2 \theta_W = 1.6 \cdot 10^{-4}$

Summary

- Known Standard Model electroweak processes are a main reference for a good understanding of the ATLAS and CMS detectors
- We know that the Standard Model is just an effective theory which will need extensions at very high energies
 But: good understanding of expected SM signatures needed since it is the background for searches for new physics, subsequently precision measurements:
- Production cross-sections of W and Z boson $\rightarrow W$ mass with 15 MeV ultimate precision
- Di-boson production WW, WZ, ZZ, ...
 - \rightarrow Triple gauge boson couplings to precision beyond $\Delta\kappa/\Delta\lambda/\Delta g_1=0.01$
- New measurement of the weak mixing angle $\rightarrow \delta \sin^2 \theta_W = 3 \cdot 10^{-4}$ and maybe better