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What is the Terascale?

“Research in particle physics is motivated by
the goal of attaining a fundamental description of the laws of physics.”

• Looking at fundamental description requires to probe elementary particles
⇒ Scattering experiments

– Fixed Target (beam on probe)
e.g. Rutherford
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– Collider (collision of two beams)
modern expts at energy frontier

• Probing shortest possible distances requires use the highest possible energies
(c.f. de Broglie wavelength)

– Unit: 1 eV, Energy reached by an electron in electric field difference of a 1 V.
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What is the Terascale?

• Technologically, with colliders, we can reach O(TeV)

– Linear Collider: 0.5 . . . 1 TeV
– Large Hadron Collider: up to 14 TeV (but protons aren’t fundamental)

• O(TeV) is also the scale where we expect to learn more about the SM

This lecture will discuss the basics of particle physics,
try to explain why the Terascale is believed to yield new insight,

and how we experimentally seek to find this new insight.
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Outline

Part I: The Standard Model of Particle Physics

• Basic components of the SM

• Fundamental interactions (Feynman diagrams)

• Symmetry breaking and the Higgs boson

Part II: Challenging the Standard Model

• Successes of the Standard Model (LEP, HERA, Tevatron)

• Problems/Limits of the Standard Model

• The International Linear Collider

• The LHC and its experiments

Conclusion
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The Standard Model of Particle Physics
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The Particle Content

Matter (Fermions, Spin 1
2)

• Ordinary Matter Additional Generations Charge

up-Quarks charm-Quarks top-Quarks +2/3e
down-Quarks strange-Quarks bottom-Quarks −1/3e
Neutrinos µ-Neutrinos τ -Neutrinos 0
Electrons Muons Taus −1e

• Each Fermion has its anti-particle

Interactions (Gauge Boson, Spin 1)

• Electromagnetism ⇔ Photon

• Strong nuclear force ⇔ Gluons

• Weak nuclear force ⇔ W±- and Z-bosons

Higgs (Scalar, Spin 0)
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From Quarks to Hadrons

• Quarks do not occur as free particles, they always form hadrons.

• Each quark may have one of three different charges “colours”
(anti-quarks have anti-colours)

• To form Hadrons one has to build colour neutral objects:

Baryons:

3 Quarks

Proton (uud), Neutron (udd)

Anti-baryons:

3 Anti-quarks

Antiproton (ūūd̄),

Antineutron (ūūd̄)

Mesons:

1 Quark and 1 Anti-quark

Pionen (uū,ud̄,...)
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Baryon Multiplets
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• Three quarks of spin 1
2 can be combined

to form spin 1
2 or 3

2

• Two multiplets of baryons which have the
same spin but varying quark content

• Special role of the spin 3
2-baryons

Λ−, Λ++ and Ω−.

– Three quarks seem to be in the same
quantum state

– Forbidden by Pauli’s exclusion principle:
“No two identical Fermions may occupy
the same quantum state”

⇒ We really need 3 colours
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Meson Multiplets
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• Quark and Anti-quark can be combined to
form spin 0 or 1 mesons.

• Two multiplets of mesons which have the
same spin but varying quark content
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Interactions
Feynman Diagrams

. . . as a graphical represenation of processes of elementary particles:

Example: Electron and positron of momenta k and k′ annihilate to form a photon
which creates a muon pair of momenta p and p′.

�γ

e−

e+

µ+

µ−

−→t
↑

­
­Ák

J
Ĵ

k′

J
Ĵ

p′

­
­Áp

-
q

x

• (Anti)Fermions as directed line

– Fermions go along the line’s direction
– Antifermions go against the direction

• Bosons as wiggled lines

• Interaction as vertex of lines

Energy-momentum conservation at each vertex imposes k + k′ = q = p + p′
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Feynman Diagrams

. . . as a presciption to compute processes of elementary particles:

The cross-section for a reaction A + B → C + D is given by

dσ =
|M|2

je
dΦ (Fermi’s golden rule)

with

je = flux density of incoming particles
}

process independent
dΦ = phase space element

M = matrix element } process dependent

M is computed from Feynman diagrams

– each diagram represents a mathematical term
– M is the sum all possible diagrams which depict A + B → C + D.

Which diagrams are allowed? What are their mathematical terms?
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Building blocks of Feynman diagrams

External lines Mathematical term� incoming fermion� incoming anti-fermion� incoming photon� outgoing fermion� outgoing anti-fermion� outgoing photon

plane waves

Internal lines� propagating (anti)fermions (4-mom. p)� propagating photon (4-momentum q)

“
m + p

p2 −m2 + iδ
”

“
1

q2 −M2 + iΓ
”

Vertices

	 interaction of photon with (anti)fermion (charge e) ∼ e
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Drawing Feynman diagrams

These building blocks can be combined (almost) arbitrarily:
• Vertices need to be connected to the indicated number and type of lines
• Fermion lines need to keep their direction

Examples

�γ

e−

(1)

e+

µ+

µ−

�(2) �(3)

�γ

e−

(4)

µ−

e−

µ− (1) Muon pair production from e+e− annihilation

(2) Quantum correction (loop) in propagator

(3) Quantum correction (loop) at vertex

(4) Electron-Muon scattering
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The Electromagnetic Interaction

In terms of Feynman diagrams the electromagnetism is described by

�f f

�γ γ

�f
f

γ

∼ z e

• For brevity one line per particle type.

• Implicitly included: the variation of
incoming, outgoing and internal

• Fermions

• Photons

• and their interaction vertex

– Fermion (charge ze) radiating a photon
– Photon splitting to two fermions
– To fermions annihilating to a photon

(depending on the time direction in the diagram)
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The Strong Nuclear Force

�g g

� ∼ gs

� ∼ gs

� ∼ g2
s

• Only Quarks (=Fermions as before)

– Note: Each quark actually is
3 Fermions corresponding, to
the three colours

• Gluons (eight of them)

• Fermion gluon-vertex
(similar to electromagnetic)

• Gluon self-coupling

– Triple gluon vertex
– Four gluon vertex

gs is stroug coupling

Note:
Summing the 3 colours or 8 gluons will give extra “colour factors” to the vertices
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The Weak Nuclear Force

�W±, Z W±, Z

�f
f ′

W±

�f
f

Z

� �

• Three gauge bosons: W+, W−, Z

• Fermion-W±-vertex

– Only for left-handed fermions
– May change generation for quarks

(flavour changing)

• Fermion-Z-vertex

– At different strength for
left- and right-handed fermions

– No flavour change (FCNC) possible

• Triple boson coupling
(ZW+W− or γW+W−)

• Four boson coupling
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The Cabbibo-Kobayiashi-Maskawa Matrix

�`
ν`

W−

∼ g �q
q′

W±

∼ g V CKM
qq′

• The flavour change at radiation of W± is described by the CKM matrix

• V CKM =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 '




0.97 0.23 0.0036
0.23 0.97 0.042

0.0087 0.041 0.999




(complex phases suppressed)

• In the SM the corresponding matrix for leptons is a unit matrix
i.e. Charged leptons change into their corresponding neutrino, only

But since 2000 we know that such neutrino mixing exists and is strong
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The Higgs Mechanism

Problem: Experimentally, W± and Z are massive, but the theory cannot be
consistently written for massive vector bosons.

Solution: The Higgs Mechanism.

Add a scalar (Higgs) doublet Φ
with a weird potential: −µ2ΦΦ∗ + λ(ΦΦ∗)2

Giving mass to gauge bosons

• Lowest potential energy at Φ =
(

0
v

)
(v = vacuum expectation value)

Rewrite Φ as Φ =
(

0
v

)
+

(
φ1 + iφ2

h + iφ3

)

• φ1,2,3 behave like the missing longitudinal components of gauge bosons.
They “give mass” to the three weak gauge bosons: W+,W−, Z.

• h is the physical Higgs boson
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Giving mass to fermions

• Apply rewriting of Φ to Higgs-Fermion coupling:

�
Φ

y
= �

vy
+ �

H

y

• Coupling of the physical Higgs to a Fermion
is proportional to the Fermion mass

• Coupling to gauge bosons is “stronger”

Thus Higgs decays dominantly to bb̄ if light
or dominantly to W+W− if heavy
(even above tt̄ threshold, i.e. MH > 2mt)
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Status of Experimental Verification of the
Standard Model
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The Concept of a Collider

• Acceleration

– High frequency clystrons
produce electrical fields
that accelerate the
particles

– Particles loose energy
through synchrotron
radiation

• Bending
Dipol Magnets required to
bend the beams

• Colliding
Straight sections with focussing elements to stear to collision
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Particle Physics Detectors

E.g DØ: 4π general purpose detector:

• Tracking in 2T solenoid

– Silicon microstrip
– Scintillating fiber tracker

• Calorimetry

– Uranium/liquid argon

• Muon spectrometer

– 3 layers of drift tubes
– Toroidal magnetic field

ATLAS: Same conceptual components

• different realisation

Calorimeter

Shielding

Toroid

Muon Chambers

Muon Scintillators

η = 0 η = 1

η = 2

[m]

η = 3

–10 –5 0 5 10
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Large Electron Positron Collider (LEP)

• Circumfence 27 km

• LEP1 1989− 1995:
√

s ' 91 GeV

• LEP2 1996− 2001:
√

s ' 130 . . . 210GeV
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The LEP Experiments

• Four omni-purpose 4π detectors

• Different strengths and weaknesses

ALEPH DELPHI

L3

OPAL
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Basic Processes at LEP
• LEP1

√
s ' 91 GeV is

dominated by Z production:

�Z/γ

γ

e−

e+

q̄

q

1
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• LEP2 runs with increased beam energies three
processes become more and more important:

– Initial state photon radiation more important
“Z-returns”

– Above
√

s ' 160 GeV W -pair production
– Above

√
s ' 180 GeV Z-pair production

�Z/γ

W−

W+

e−

e+

f̄

f
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f

�νe/e
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Z-Boson Mass and Width

Resonance peak of Z-production yields information about the mass and the width

Γ = 2.4953± 0.0023GeV

• LEP was run at ∼ 7 energies near MZ

– Exact knowledge of
√

s required

• The data are shown with error-bars
that are increased by a factor of 10.

• Radiative correction modify the shape

MZ = 91.187± 0.0021 GeV
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Number of Neutrinoflavours

• Decay width depends all possible decays

• Including neutrinos

• The more decays the wider

The number of neutrinos that occur in Z → νν̄ is Nν = 2.9840± 0.0082.
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W Boson Mass (at LEP)

At centre-of-mass energies above 160 GeV
W -boson pairs can be produced LEP

At LEP W -mass determined in two ways

• Cross-section of W production at
√

s = 161 GeV

– At
√

s = 161 GeV cross-section is most sensitive

• Invariant mass of decay products
√

s=161...208 GeV
(e/µ/τ+jets and 4jets)

– apply energy momentum conservation
– apply equality of W+- and W−-mass
⇒ Build invariant mass from fitted objects

Combintation of all LEP experiments and Tevatron
MW = 80.399± 0.025 GeV
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Figure 7: Measurements of the WW cross-section compared with the Standard Model
prediction given by the YFSWW [16] and RacoonWW [34] programs. The shaded band
represents the uncertainty on the theoretical calculations.
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Forward Backward Asymmetry

• MW and MZ are related the ratio of left- and right-handed couplings,
determined by the Weinberg angle θW

sin2 θW = 1− M2
W

M2
Z

= 0.2226± 0.00025

• The forward-backward asymmetry

A
(0,µ)
FB =

σF − σB

σF + σB
= 0.0169± 0.0013

strongly depends on sin2 θW

• Compare sin2 θW obtained from asymmetry
with the one from the Boson masses

⇒ Excellent consistency (µ: 0.5σ, b: 2.5σ) ︸ ︷︷ ︸
Backward

︸ ︷︷ ︸
Forward
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The strong coupling: αs

• How often do qq̄ radiate a gluon?

�Z/γ

e−

e+

q̄

q

• But quarks fragment to Hadrons

• Observables are jets, sprays of hadrons

• One needs to specify what is meant by a jet

– Many definitions exist (c.f. upper figure).
– They are different observables.
– All will depend on αs

• The strong coupling is energy dependent
αs = 0.1184± 0.007 (∼ 16× αem)

QCD α  (Μ  ) = 0.1184 ± 0.0007s Z
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HERA

• HERA is a e±p collider

• Circumference of 6.3 km

• HERA-I (1992-2000)

– until 1997
27.5 GeV× 820 GeV ⇒ √

s = 300GeV
– from 1998

27.5 GeV× 920 GeV ⇒ √
s = 318GeV

• 2001-2002 Luminosity upgrade

• HERA-II 2003-2007

– 27.5 GeV× 920 GeV ⇒ √
s = 318GeV
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HERA Experiments

H1, ZEUS
Omni-purpose 4π detectors

HERA-B
Specialised in B Physics

HERMES
Specialised in Proton Spin

about 500 pb−1 per experiment
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Parton Density

• At high energies contents of proton is probed

• Only one parton participates in reaction with e±

• This will only carry a fraction (x) of the proton momentum �
~P

Q2

x~P

• PDFs describe how likely one
finds a parton p at fraction x,
when probing at scale Q2

• The more precise we look
(higher Q2)

the more details we see
(more splittings ⇒
more partons with lower x)
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Kinematic Range of Hera vs. LHC

• Low x results from Hera
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The pp̄ Accelerator Tevatron

• Circumfence 6.4 km.

• pp̄ collisions

• Run I (1987-1995)
Collision energy 1.8 TeV

• Run II (since 2001)
Collision energy 1.96 TeV

• 2 experiments,
CDF and DØ,
record events.

L ∼ 7 fb−1 on tape.

Calorimeter

Shielding
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Muon Scintillators
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The Tevatron

�
p

p̄

• Now PDF need to be applied at both sides.
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W -Boson Mass (at the Tevatron)

• Only leptonic decay can be found
in hadron collisions

• Momentum conservation only applicable
in transverse plane
⇒ Only px and py accessible for neutrino

• Reconstruct transverse mass
m2

T = 2pe
Tpν

T (1− cos φ)

Combintation of all LEP experiments and Tevatron
MW = 80.399± 0.025 GeV
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Top Quark Production at the Tevatron

Strong top production

85% qq̄ → tt̄

15% gg → tt̄

σ(tt̄) ' 7.46pb

Weak top production

Drell-Yan W -g fusion

s-channel t-channel

σ(t) = 3.46pb = 1.12pb+2.34pb

Top Quark Decay

t
ν, q'

l+, q

W 
+

b ∼ 100% to W + b

• Top discovered 1995 (CDF and D0)

• Weak production observed 2009

• mt = 173.1±0.6(stat)±1.1(syst)GeV
best known quark mass
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Fits of Electroweak Parameters

• Precision measurements of electroweak obs.

– Strong coupling
– Z mass and width
– W mass and width
– t mass
– Asymmetries,. . .

are related directly or in loop diagrams

• All data are in excellent agreement

• Biggest deviation 3σ (1 of 18)

Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02758 ± 0.00035 0.02768

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959

σhad [nb]σ0 41.540 ± 0.037 41.478

RlRl 20.767 ± 0.025 20.742

AfbA0,l 0.01714 ± 0.00095 0.01645

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481

RbRb 0.21629 ± 0.00066 0.21579

RcRc 0.1721 ± 0.0030 0.1723

AfbA0,b 0.0992 ± 0.0016 0.1038

AfbA0,c 0.0707 ± 0.0035 0.0742

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.399 ± 0.023 80.379

ΓW [GeV]ΓW [GeV] 2.098 ± 0.048 2.092

mt [GeV]mt [GeV] 173.1 ± 1.3 173.2

August 2009

Fantastic success of the SM, expecially given the experimental precision!
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Top and W Mass in Elektroweak Fits
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Combined mW and mt results
touch SM-range only barely
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Higgs Limits

• LEP (low MH): e+e− → Z → ZH → qq̄bb̄

– MH > 114.4 GeV

• Tevatron (high MH): pp̄ → H → WW

– MH = 162 . . . 166 GeV excluded at 95%C.L.
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November 6, 2009

DELPHI Higgs candidate:

Expected luminosity at the Tevatron not sufficient for discovery.
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Open Questions in Particle Physics

• How can we incorporate gravity?

• Is the Higgs mechanism the right idea?

– Why is the Higgs so light?
(It should receive huge radiative corrections, “hierarchy problem”)

• Why are the charges quantised?
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Cosmology in a Nutshell

• The Universe started in Big Bang

• Described by Einsteins General Relativity

• Space time could be

– Flat
– Negatively curved
– Positively curved

• Its expansion could be

– accelerating forever
– decelerating, but expanding forever
– decelerating and collaps

• Governed by energy and matter content

– Ω = Ωm + ΩΛ (= 1 ⇔ flat)
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Cosmology: Experimental Status

• Measurement of the

– Cosmic Microwave Background (CMB)
– Supernovae escape speed (SNe)
– Barionic Matter distribution (BAO)

• The universe is flat and expansion accelerates

• Only ∼ 5% of the universe is made of atoms
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No Big Bang

What is Dark Matter and Dark Energy composed of? ⇒ New Physics!?
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Open Questions in Particle Physics

• How can we incorporate gravity?

• Is the Higgs mechanism the right idea?

– Why is the Higgs so light?
(It should receive huge radiative corrections, “hierarchy problem”)

• Why are the charges quantised?

• What is Dark Matter?

• What is Dark Energy?

• Why does the universe contain (nearly) no anti-matter?

. . .
New phyiscs at the Terascale can solve some of these problems
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The International Linear Collider
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International Linear Collider

An e+e−-collider would be ideal to address all these questions

• full use of beam energy, due to elementary beam particles

• no annoying effects of coloured hadron remnants

But synchrotron radiation prevents O(1TeV) with a ring ⇒ Build linear collider

• Required length: approx. 30 km • Extreme focus (5 nm) required

Status: Research and Design ongoing Tech. Design Report end of 2012
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The Large Hadron Collider
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LHC

• Proton-Proton collider

• Circumfence 27 km (old LEP tunnel)

• √s = 7 TeV (−2011), then 14 TeV
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LHCb

The Large Hadron Collider beauty experiment

• Interaction point at one end of detector

• Only forward region equipped

• Specialises on b physics
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ALICE

A Large Ion Collider Experiment

• Specialises on heavy ion collision

• Strongly interacting matter at extreme energy densities

• New phase of matter: quark-gluon-plasma

Daniel Wicke, Physics at the Terascale, LHC, ALICE ISTP, 8th March 2010 51



ATLAS

(Originally for “A Toroidal LHC ApparatuS”)

• Biggest of the four main experiments; General purpose 4π detector

• Aims to find the Higgs

• . . . and new physics
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CMS

The Compact Muon Solenoid Experiment

• Heaviest of the LHC experiments

• General purpose 4π detector

• Aims to find Higgs

• . . . and to find new physics
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Goals of the LHC

• Find the Higgs

– High energy yield higher σH

– ... and covers full allowed range

• Find new physics

– explaining Dark Matter
– explaining Dark Energy
– explaining matter domination

• Cross-check with precise SM results
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Conclusion

The LHC Rap (Alpinekat)
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