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Outline 

•
 

LHC : Why and What is it ?

•
 

LHC operation, luminosity

•
 

Particle detectors
Examples : ATLAS & CMS

•
 

Into the future
ILD & SiD

 

at ILC or CLIC
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Why the LHC

•
 

The Standard Model is in impressive agreement 
with basically all measurements.  Still it…

•
 

will diverge at ~ 1TeV without the Higgs


 

But no sign of the Higgs or any other extension yet 

•
 

The Standard Model has many parameters


 

Masses, couplings, mixing angles,…



 

Maybe there is something more simple and beautiful ?

•
 

There is no gauge-coupling unification!


 

The three SM couplings do not unify at highest energies!

•
 

Cosmology tells us there is more (dark matter, etc)


 

No dark matter candidate in the SM

•
 

And even more fundamental questions…


 

Gravity? Gauge structure? Why 3 generations ?             
Hierarchy / fine-tuning problem? Baryon asymmetry? …

Higgs search :
EW fit : MH

 

< 155GeV (CL 95%)
direct searches : MH

 

> 114.5 GeV
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Why the LHC II

•
 

New physics expected @ ~1TeV


 

Electroweak symmetry breaking O(1TeV)



 

Dark matter candidates may show up at O(1TeV)



 

Many extensions of the SM predict ‘new particles’ at ~ O(1TeV)

•
 

Want to study decays of W,Z,t,H,… 


 

Decays in quark (QCD background!) or leptons



 

Cross sections x branching ratio in the order of a few fb

•
 

Want to get sufficient statistical significance 


 

to get a few 100 ‘events’ per year we need ~ 100fb-1/y



 

With 3x107 s/y

 

and 30% duty cycle we need L = 1034

 

/cm2 s

10fb ->
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Why the LHC III

•
 

Collider
 

vs
 

fixed target


•
 

pp vs
 

ee


 

pp for discovery, but

complex initial state (q,g, QCD processes dominates)

no well defined energy (only unknown fraction x)



 

ee

 

for precision

well defined energy (neglecting initial state radiation)

well defined initial state (e, γ, electro-week process)

•
 

Circular vs
 

linear 


 

Linear 

no repetition, need high gradient or long accelerator (ILC ~ 30km for O(1TeV))

no loss due to synchrotron radiation



 

Circular

reuse beam and acceleration structures many times 

loss due to synchrotron radiation                need large radius and massive particle (proton)  
R4m

4E~E

beamcmbeamcm mE~E : target fixedvsE2E:collider 
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Why the LHC III

•
 

Collider
 

vs
 

fixed target


•
 

pp vs
 

ee


 

pp for discovery

complex initial state (q,g, QCD processes dominates)

no well defined energy (only unknown fraction x)



 

ee

 

for precision

well defined energy (neglecting initial state radiation)

well defined initial state (e, γ, electro-week process)

•
 

Circular vs
 

linear 


 

Linear 

no repetition, need high gradient or long accelerator (ILC ~ 30km for O(1TeV))

no loss due to synchrotron radiation



 

Circular

reuse beam and acceleration structures many times 

loss due to synchrotron radiation                need large radius and massive particle (proton)  
R4m

4E~E

beamcmbeamcm mE~E : target fixedvsE2E:collider 
LHC : pp collisions @ 14TeV  
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The LHC

LHCb

CMS

ALICE ATLAS
CERN

pp collider
7 TeV

 
per beam (3.5 TeV

 
until 2012) 

26.7 km circumference
1232 superconducting dipoles
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The LHC – some more numbers

Circumference 26.7 km 100-150 m underground

Number of SC dipoles 1232 Cable Nb-Ti, cold mass 37 kt

Dipole length 14.3 m

Dipole field strength 8.4 T High beam momentum

Operating temperature 1.9 K Super-fluid helium, “largest 
refrigerator in the world”

Current in SC coils 13 kA 1 ppm
 

resolution

Beam intensity 0.5  A

Beam stored energy 362 MJ 1 MJ melts 1.5 kg of copper

Magnet stored energy 1100 MJ (*8)
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The LHC – a bit of history

•
 

10 September 2008: first beams around the ring.

•
 

19 September 2008: the “incident”.

•
 

2008-2009: 14 months of repairs and consolidation.

•
 

20 November 2009: First beams round again.

•
 

14 December 2009: Collisions with Ebeam

 

= 1.18 TeV
 

! world record

•
 

30 March 2010: Collisions at Ebeam

 

= 3.5 TeV
 

!

•
 

4 November 2010 Heavy Ions (Pb) with Ebeam

 

= 3.5 ZxTeV
 

(Z = 82)

•
 

6 December 2010 –
 

21 February 2011 : Technical stop

(maintenance & minor repair for LHC & detectors)

•
 

Last weekend : restart beam operation (machine studies)
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The LHC – 2010 Run

pp collisions
•

 
from Mar. 30th

 

to Oct. 31st

•
 

Energy : 3.5 TeV
 

per beam

•
 

Bunch intensity : 1.2 x 1011

 

p/bunch

•
 

Number of bunches : up to 348 (colliding)

•
 

ATLAS : 45.0 pb-1, Lmax =2.1x1032 cm-2s-1

•
 

CMS : 43.2 pb-1, Lmax =2.0x1032 cm-2s-1

Heavy Ion (lead-lead)
•

 
Energy : 3.5 zTeV

 
per beam

•
 

from  Nov. 8th

 

to Dec. 6th

•
 

CMS :  8.5 μb-1

 

, ATLAS : 9.2 μb-1
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The LHC – 2011 Schedule

Estimates for 2011 :

Energy :  3.5 TeV
1.2 x 1011

 

p/bunch
Bunch spacing 75 ns
(~ 930 bunches)
Lpeak

 

: 1.3 –
 

1,8 x 1033

~ 135 days at Lpeak

Lint

 

= 2 –
 

3 fb-1

 

in 2011
(official goal : Lint

 

~ 1fb-1)

LHC will continue in 2012

Goal : Lint

 

~ 10fb-1

today
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We need to measure the products of pp collisions…

LHC is designed for
3300 bunches with ~ 1011

 

protons/bunch
bunch to bunch spacing : 7.5m
collision occur every 25 ns   (in 2011 : 75ns)
20 pp interactions at the same time.
(mostly producing low energy secondary particles)

Some energy
is converted
into secondary
particles at
large angles.

7 TeV 7 TeV

LHC
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How do we measure these particles ?

particle interaction
We can only ‘see’ particles through their interaction with matter :

neutrinos

electrons electromagnetic

muons electromagnetic

p, K,  electromagnetic,
hadronic

photons electromagnetic

neutrons, K0
L hadronic

B, D weak decay

J/, , W, Z, H, t prompt decay

none, (weak interaction only) 
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• Photons :
Photoelectric effect  < 100keV

Raleigh scattering    < 100keV
Compton scattering 10keV –

 

2 MeV

Pair production       > 1 MeV
(dominates > 4MeV)

• Charged particles :
Ionization 
Bremsstrahlung

Cherenkov

 

emission (v above c/√ε)
Transition radiation (traversing different ε)

X0

 

= radiation length

Critical energy Ec

 

(dE/dx

 

: Ionization = Bremsstahlung)

Ec

 

~ 580 MeV/Z 

Electromagnetic interactions with matter

0

0
X
-X

 e E E 

Z,A

e-

X+X



Z

e+

e-
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Symbolic detector layout

non-destructive
measurement

destructive
measurements

tail
catcher
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Particle signatures in a detector

neutrinos missing energy

electrons electromagnetic track and  EM shower

muons electromagnetic (ionisation) penetrating track

p, K,  electromagnetic (ionisation)
hadronic

track and
hadron

 

shower

photons electromagnetic EM shower

neutrons, K0
L hadronic hadron

 

shower

B, D weak decay secondary vertex

J/, , W, Z, H, t prompt decay invariant mass

What we can measure is the charge deposit in different materials

none, (weak interaction only) 
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Design criteria for an ideal detector

•
 

We want to capture all particles  :


 

Surround the interaction region as hermitic as possible (but let

 

the beams pass)



 

No holes, no cracks, no insensitive regions



 

At the LHC we get finally get  ~ 20 interactions every 25ns –

 

be fast

•
 

We want to measure as accurate as possible :


 

Resolve all particles (high granularity, many channels)



 

Measure energies and directions with high precision



 

As little influence to the measured particles as possible (except for the calorimeters)

•
 

There are unfortunately some boundary conditions :


 

Cost and available technology



 

Beam pipe and accelerator components



 

Mechanics, power and signal cables, cooling



 

Radiation
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For a real collider detector (here CMS) it looks like this 

A slice of CMS
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The CMS detector

diameter : 15 m, length : 22 m, total weight : 12500 tons, 4 tesla

 

solenoid,  
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A slice of ATLAS
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The ATLAS detector
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ATLAS, CMS and building 40 at CERN

ATLAS

CMS
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Charged particles

•

 

Measurement



 

Track (Origin & Direction), energy loss and with B-Field : momentum and sign of charge 



 

Photons from Cherenkov

 

light or transition radiation for particle identification



 

Should be non destructive (no scattering and not too much energy

 

loss)

•

 

Examples of tracking detectors with different media :



 

Gaseous detectors

mainly operated in the proportional scheme

Drift chambers (planar, radial, cylindrical, jet chamber)

Time projection chamber (TPC)

Micro strip gas chambers (MSGC)

Cathode strips chambers

Straw tubes, drift tubes

Resistive plates chambers



 

Semiconductor (mainly silicon but also germanium and diamond)

Strip detectors 

Pixel detectors

Number of electron-ion pairs of a charged particle
traversing a gas detector vs

 

the voltage applied
Note : At very high gain independent of particle type
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Example 1 : Gaseous detectors 

+ HV

signal

cathode

Anode Wire

Gas-filled tubeGas-filled tube
-

--
--

+
++ +

+
t0

-

+ +
+

+
+

t1

----

∆s

∆s

• particle ionises gas atoms along track

• electrons drift towards anode: vd

• E-Field ~1/r -

 

gas amplification near wire

• Measure drift time : Δt

 

= t1 -

 

t0

• Reconstruct radius : Δs = vd

 

Δt

• Vd

 

depends on gas, voltage, pressure, 
temperature, field :  → need to calibrate

CMS muon

 

barrel drift chambers

Multi-Wire proportional chamber
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Example 2 : Silicon strip detector 

50 µm

300 µm
E

•

 

Planar sensor from a high-purity silicon wafer (here n-type).

•

 

Segmented into strips by implants forming pn junctions.

•

 

Strip pitch 20 to 200 µm, high precision photolithography (expensive).

•

 

Bulk is fully depleted by a reverse bias voltage (25-500V).

•

 

Ionizing particle creates electron-hole pairs (25k in 300 µm).
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Example 3 : Silicon pixel detectors

2D: strips

3D: pixels

Pixels have much more channels
hence less occupancy but more readout lines

Readout lines cannot be attached at end of strip
Requires readout chip bump-bonded to the sensor

Strip detectors have good resolution transverse to strip
Less good along the strip
At lower radius high particle density results in too
many (irresolvable) hits on a strip detectors

Divide strips into smaller parts -> pixel
ATLAS : 50 x 300 μm2

CMS : 100 x 150 μm2
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CMS pixel detectors

3 cylinders of silicon pixel sensors

Left :
Bare module with 16 sensors
module size ~ 16x62 mm2

4160 pixels per sensor

Right :
Full module with HDI and cable

Barrel : 3 layers, 48Mpixel total
End caps : 2x2 disks, 18Mpixel total 
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Examples of silicon strip sensor modules 

ATLAS
silicon tracker module
2 sensors connected (2 x 6,4 x 6,4 cm2)
738 strips 12 cm long with 80μm pitch
two modules mounted back to back
with 40 mrad

 

stereo angle

CMS 
strip sensors modules of 
outer barrel and end cap
single and double layers

double layers with 2 modules mounted
back to back with with

 

100mrad stereo angle 
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CMS – Silicon strip tracking

CMS strip tracker :
Inner & outer barrel and end caps

107

 

channels
~ 200 m2

A layer of the
outer barrel

barrel :
10 cylindrical layers

end caps :
12 disks

double sided layers in blue
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ATLAS inner tracker

Pixel detector
3 cylindrical layers silicon pixel
3 disks per end cap

SCT -

 

Semiconductor tracker
4 double layers silicon strip
9 disks per end cap

TRT -

 

Transition radiation tracker
~36 layers of straw tubes (4mm)
12+8 planes in 2 wheels per end cap
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Example 4 : transition radiation detector 

1% probability per foil 

•

 

Relativistic particles emitting photons if passing material with

 

changing ε

straw tube  with Xe

 

gas for high x-ray absorption
Straw tubes are interleaved with radiator foils

Transition radiation depends on particle mass : 
Energy loss  ~ 1/γ

 

(γ

 

= E/mc2)
allows separation of e / π

Test beam data from ATLAS
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Energy loss allows particle identification 

•

 

At lower momentum the energy loss allows particle identification



 

The energy loss due to ionization is given by  (Bethe-Bloch) :



 

with β

 

= v/c, γ

 

= E/mc2

1 dE
dx

4 N A r e
2 m e c 2 Z

A
z 2

2 ln
2 m e c 2 2 2

I
2

2

~1/β2 relativistic rise ~ ln

 

γ

K p D

CMS tracker data
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The momentum of a particle – using a magnet

•
 

A charged particle in a magnetic field will be bent


 

The force on a traveling particle with charge q and velocity v in a magnetic field B is

• FB

 

= q vt

 

B

 

(with vt

 

being the velocity component transverse to the B-Field)



 

balancing by the centrifugal force of a particle on a circular track with radius R

• FR

 

= m vt
2

 

/ R



 

the transverse momentum pt is given by

• pt

 

= m vt

 

= q R B



 

We only measure point (‘hits’) on a curved track with some precision σx

• the relative error on the momentum increases with the momentum :  σ(pt

 

)/pt

 

~ pt

• and depends on hit resolution : σ(pt

 

)/pt

 

~ σx

 

/ BL2   (L =  length of the measured track)
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Tracking summary

•
 

We use mainly ionization, bremsstrahlung
 

and pair production to


 

Detect particles



 

Measure their momentum (curvature in a magnetic field)
•

 

relatice

 

error increases with momentum

 

: σ(pt

 

)/pt

 

~ pt

•

 

large magnets help : σ(pt

 

)/pt

 

~ σx

 

/ BL2



 

Measure the energy loss (dE/dx) to identify particles at lower momentum

•
 

We can use Cherenkov
 

emission and transition radiation to


 

Identify particle type (emissions depend on γ

 

~ E/mc2)

•
 

We avoid to disturb the particle as much as possible


 

Energy loss



 

Multiple scattering
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Particle energy measurements - calorimeters

•

 

To determine the total energy of a particle :


 

the particle has to loose all its energy in the material



 

all energy deposited in the material should be measured



 

the signal we measure should depend linear on the particles energy



 

different particles should have the same signal dependence to the energy

•

 

Electromagnetic and hadronic

 

energy loss mechanisms require different detectors


 

Different segmentation according to shower profile



 

Electromagnetic : radiation length X0

 

,   hadronic

 

: nuclear interaction length λ

•

 

High material density is required to capture all energy (no leakage)

•

 

The measurement is highly destructive !


 

Except of muons

 

and neutrinos all particles should stop inside the calorimeter volume

•

 

Calorimeters are essential for high-energy particles:


 

calorimeters get better for higher-energy particles !



 

momentum determination is less precise for high momentum tracks (small curvature)
 

B field magneticin   with 

~:Tracker

1~)( :r  Calorimete

rqBp

p
p
p

EE
E






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Energy resolution of a calorimeter

•

 

1/√E 


 

Fluctuations in shower development



 

Fluctuations in sampling 

•

 

Constant term


 

Absorption losses



 

Non linearity



 

Calibration



 

Dead material

•

 

1/E 


 

Electronic noise

 
E
cb

E
a

E
E




Typical values for  a/√E

•

 

EM :


 

~ 20% for sampling calorimeters


 

~  few% for homgenious

 

calorimeters

•

 

Hadronic


 

~50% for non compensating
(response : EM > hadronic)



 

~35% for compensating calorimeters
(response : EM ≈

 

hadronic)

The relative energy resolution of a calorimeter can be expressed

 

by
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Examples of calorimeter types

•
 

Calorimeters can be divided in two architectures


 

Sampling calorimeters

Separate absorber material and sensitive material

Material layers usually interleaved

Examples : Absorber/scintillator

 

sandwich (ZEUS, ATLAS),

LAr

 

Calorimeters (H1, ATLAS)



 

Homogeneous calorimeters

Absorber material is sensitive material

Example : Lead Crystals (JADE, OPAL, CMS)

•
 

Different types of calorimeters for electromagnetic and hadronic
 

interaction


 

Different absorber/sensitive material



 

Different segmentation according to shower profile
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Electromagnetic showers

• Photons :
Photoelectric effect  < 100keV

Raleigh scattering    < 100keV
Compton scattering 10keV –

 

2 MeV

Pair production       > 1 MeV
(dominates > 4MeV)

• Charged particles :
Ionization 
Bremsstrahlung

Cherenkov

 

emission (v above c/√ε)
Transition radiation (traversing different ε)

X0

 

= radiation length

Critical energy Ec

 

(dE/dx

 

: Ionization = Bremsstahlung)

Ec

 

~ 580 MeV/Z 

0

0
X
-X

 e E E 

Z,A

e-

X+X



Z

e+

e-

Scint. LAr Fe Pb W

X0 (cm) 34 14 1.76 0.56 0.35
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• homogeneous calorimeter
• absorber = active material = PbWO4 crystals
• dimensions of crystal : 2x2x23 cm3

• radiation length : 23 X0
• pointing geometry
• energy loss due to  Cherenkov

 

emission
• photon detection by APD (barrel) and VPT (end cap)

• design resolution :

Example : CMS EM Calorimeter 

%55.0155%7.2


E
MeV

EE
E

APD
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Example : ATLAS LAr EM Calorimeter 

Back Cell

Middle Cell

Strip Cell

3 sections:


 

strips for position resolution


 

middle for energy measurement


 

back for leakage control



 

Pb

 

absorber in LAr


 

Accordion geometry for routing of readout 
signals to the back



 

Allows dense packing and fine granularity.
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•
 

Showers initiated by hadrons are different:
•

 

nuclear reactions (strong interactions) !


 

many different processes


 

probabilities from experimental data

•

 

Production of many secondary particles: 


 

EM fraction (π0γγ!) increases with energy


 

hadronic

 

contribution: π±, n, p, …

•

 

Nuclear absorption length
(equivalent to X0 in EM but larger → need bigger HCAL )

•

 

Particle generation down to π

 

threshold
•

 

Number of secondary hadrons rises with ln(E)
•

 

Hadronic

 

showers are broader than EM showers
•

 

Invisible contribution (excitations of nuclei, fragments, low energy photons, etc)

 worse energy resolution, response HAD/EM < 1

Hadronic showers

23/1 .35  cmgA
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Example : ATLAS Calorimeter 

‘Hadronic

 

LAr

 
Endcaps’

-

 

Steel absorber 
-

 

4400 channels

 
-

 

0.1•0.1 / 0.2•0.2

 
-

 

1-5 

‘EM LAr

 

Accordeon’
-

 

Lead absorber 
-

 

174000 channels

 
-

 

0.025•0.025

 
-

 

: <2.5, <3.2

‘Forward LAr’
-

 

30000 ‘rods’, each 1mm

 
-

 

Cell size 2-5cm2

 

(4 rods)

 
-

 

: <3.1, <4.9

 
-

 

copper / tungsten

‘LAr

 

Pre-Sampler’
Compensates energy loss in 

front of calorimeters 

‘Hadronic

 

Tile’
-

 

463000 scintillating ‘tiles’

 
-

 

10000 PMTs

 
-

 

granularity 0.1•0.1 
-

 

: <1.0, (0.8-1.7)

 
- L=11.4 m, Rout

 

=4.2 m
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Magnets

Solenoid Toroid

Field direction along beam axis.
Homogenous field inside the coil.
Need surrounding iron structure to
capture the 'return field'.

CMS: I = 20 kA, B = 4T.
Superconducting (4K).

Field circles around the detector.
Detailed field map needed.
No iron structure needed.

ATLAS: I = 20 kA, B up to 4 T.
Superconducting (4K).
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Bending muons : solenoid vs toroid

x-y

 

plane

r-φ

 

plane
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Moun detection

•

 

Mouns

 

may be the key to new and rare physics processes (easy to identify)

•

 

Capability to trigger on moun

 

tracks needed

•

 

Position resolution should match tracking resolution (moun

 

track linking)

•

 

Large range of energy spectrum to be accurately measured (few GeV

 

up to 100 GeV)

•

 

Charge determination at highest energy needed (even above TeV)

•

 

High rate environment in end cap regions need robust detectors

•

 

Use different technologies for the various requirements (RPC, DT, CSC)

Example CMS
Drift tubes in barrel for high precision
Robust Cathode Strip Chambers in end cap
Fast Resistive Plate Chambers for trigger purpose

Large Magnet is essential !
σp

 

/p

 

~ σx

 

p/BL2
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Moun detection - ATLAS

Monitored Drift Tubes

-

 

3 cylinders at R=7, 7.5, 10m

 
-

 

3 layers at z=7, 10, 14 m

 
-

 

372000 tubes, 70-630 cm

 
-

 

space

 

=80m, t

 

=300ps

Cathode Strip Chambers

- 67000 wires

 
-

 

only for

 

||>2 in first layer

 
-

 

space

 

=60m, t

 

=7ns 

Thin Gap Chambers

-

 

440000 channels

 
- ~MWPCs

Resistive Plate Chambers

-

 

354000 channels

 
-

 

space

 

=1cm

 
-

 

trigger signals in 1ns 
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Moun detection – CMS Event

ZZ → 4μ

Invariant masses 
μ0

 

+ μ1

 

: M01

 

= 92.15 GeV
μ2

 

+ μ3

 

: M23

 

= 92.24 GeV
of all 4 μ

 

: M4μ

 

= 201 GeV
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Comparing ATLAS and  CMS

Tracker                Silicon Pixel and Strips, TRD            Silicon Pixel and Strips
Momentum          2 Tesla Solenoid                              4 Tesla Solenoid
ECAL

 

Lead/LAr

 

Lead-Tungstate

 

crystals
HCAL

 

Lead/Scintillator

 

(central)

 

Stainless steel/Scintillaor
Copper+Tungsten/LAr

 

(forward)

 

or Copper/Scintillator
Muons

 

Large Air-core toroid

 

Instrumented return yoke
MDT, RPC, CST, TGC

 

DT, RPC & CST 
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Trigger & DAQ

ATLAS CMS
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If all works well you finally get things like this …..

Invariant mass of moun

 

pairs measured by CMS data from 2010
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Into the future – 3D Silicon Sensors

“3D” electrodes:
narrow columns along detector thickness,
diameter: 10 µm, 
distance: 50 –

 

100 µm
Lateral depletion:

lower depletion voltage needed

 
thicker detectors possible

 
fast signal

 
radiation hard

n-columns p-columns wafer surface

n-type substrate

Introduced by:S.I. Parker et al., 
NIMA 395 (1997) 328

p+
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Into the future – Particle Flow
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Detectors for particle flow

High granular ECAL and HCAL
Calorimetry

 

inside a large coil
ECAL : SiW, lateral segmentation : 1cm2, 24X0

 

, 0.9λhad
‘tracking calorimeters’
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SiD – Detector Design Study for a future Linear Collider
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ILD – Detector Design Study for a future Linear Collider
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Additional material
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The LHC – bending 7 TeV protons

1200 dipoles
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