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Warnings

T. Schörner-Sadenius  | QCD @ LHC  | Introductory School to Terascale Physics | 10 March 2010  |  page 38 

>! Thrust, and the four-jet rate 

THE STRONG COUPLING: e+e- EXAMPLES 

T. Schörner-Sadenius  | QCD @ LHC  | Introductory School to Terascale Physics | 10 March 2010  |  page 34 

JET PHYSICS: RESULTS OVERVIEW 

•! Jet physics is a well-established 

   and well-understood field. 

•! Excellent basis for QCD studies  

  at the LHC. 
•! Some difficult phase  

   space regions.  

•! Note that jets are of more  

  importance than “only” for QCD  

  studies. 

T. Schörner-Sadenius  | QCD @ LHC  | Introductory School to Terascale Physics | 10 March 2010  |  page 38 

>! Thrust, and the four-jet rate 

THE STRONG COUPLING: e+e- EXAMPLES 

T. Schörner-Sadenius  | QCD @ LHC  | Introductory School to Terascale Physics | 10 March 2010  |  page 33 

>! Measuring jets up to energies of 600 GeV!!!! 

>! Nice description by NLO QCD calculations! In contrast to HERA, often 

experimentally limited.   

JET PHYSICS: RESULTS FROM TEVATRON 

T. Schörner-Sadenius  | QCD @ LHC  | Introductory School to Terascale Physics | 10 March 2010  |  page 24 

>! … Mean energy fraction of particles in jets as function of opening angle! 

PARTICLE PRODUCTION 

Nice agreement between results from different machines ! 

Experimentalists’ lectures

The Answer is 

42±0.01
Wednesday, February 23, 2011



Warnings
HS ∼ −

�

l,k
l �=k

p̂l · ε(s) p̂k · ε(s�)
p̂l · p̂m+1 p̂k · p̂m+1

tl ⊗ t†k

I = lim
�→0

�� 1

0

dx

x
x−�f(x) +

1

�
f(0)

�

parton distributions

matrix element

σ[F ] =
�

m

� �
d{p, f}m

� � �� �
fa/A(ηa, µ

2
F ) fb/B(ηb, µ2

F )
1

2ηaηbpA ·pB

×
�
M({p, f}m)

�� F ({p, f}m)� �� �
��M({p, f}m)

�
� �� �

observable

��ρV
∞

�
≈ −

� ∞

t
dτ V(�)

I (τ)
��ρ(t)

�

N (t�, t) = T exp

�
−

� t�

t
dτ VI(τ)

�

HC ∼

�

l

tl ⊗ t†l Vij(si, sj)⊗ V †
ij(s

�
i, s

�
j)⇔

αs

2π

�

l

1
pi · pj

Pfl,fi(z) + . . .

The Answer is 

42

Theorists’ lectures
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Introduction

Picture: ATLAS simulation

The LHC is running and we will have to deal with the data soon.
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LHC = QCD + ε

Wednesday, February 23, 2011



Introduction

H

1. Incoming hadron                     (gray bubbles)

➮ Parton distribution function

2. Hard part of the process       (yellow bubble)

➮ Matrix element calculation, cross 
sections at LO, NLO, NNLO level

3. Radiations                                     (red graphs)

➮ Parton shower calculation

➮ Matching to the hard part

4. Underlying event                       (blue graphs)

➮ Models based on multiple 
interaction

5. Hardonization                          (green bubbles)

➮ Universal models 

The structure of the Monte Carlo event generators
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Born Level Calculation

σ[FJ ] =
�

m
dΓ (m)({p}m)|M({p}m)|2FJ({p}m)

✓ Easy to calculate, no IR singularities. Several matrix element generators 
are available (Alpgen, Helac, MadGraph, Sherpa)

✗ Strong dependence on the unphysical scales (renormalization and 
factorization scales)

✗ Exclusive quantities suffer on large logarithms

✗ Every jet is represented by a single parton

✗ No quantum corrections

✗ No hadronization

H
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NLO Level Calculation

✓ Includes quantum corrections, in most of the cases it significantly reduces 
the unphysical scale dependences

✓ One of the jets consists of two partons (still very poor)

✓ Hard to calculate, the most complicated available processes are 2 → 3 
(NLOJET++, MCFM, PHOX,..., even automated tools are available) 

✗ Exclusive quantities suffer on large logarithms

✗ No hadronization

HH +

Real contributions Virtual contributions
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NLO Jet Structure
At Born level every jet is 
represented by one parton.

At NLO level one of the jets consists of two 
partons or one parton with virtual radiation.

Collinear radiation Soft gluon radiation Virtual radiation

The collinear pair or the soft gluon is 
unresolvable, we have to integrate out these 
radiations. The observable is insensitive for 
these type of radiations.
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Soft Singularities
The QCD matrix elements have universal factorization property when an 
external gluon becomes soft

HS ∼ −

�

l,k
l �=k

p̂l · ε(s) p̂k · ε(s�)
p̂l · p̂m+1 p̂k · p̂m+1

tl ⊗ t†k

pr→0−−−−−→

l

k

�

l,kM
m

+
1

M
m

+
1

M
m

M
m

Soft gluon connects everywhere and the color structure is not diagonal; 
quantum interferences in the color space.
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Collinear Singularities
The QCD matrix elements have universal factorization property when two external 
partons become collinear

HC ∼

�

l

tl ⊗ t†l Vij(si, sj)⊗ V †
ij(s

�
i, s

�
j)⇔

αs

2π

�

l

1
pi · pj

Pfl,fi(z) + . . .

i�j−−−−→

..
..
.

1

m + 1

i
j

M
m

+
1

⊗

..
..
.

1

m + 1

M
m l

2 2

i

j

Vij

2

Altarelli-Parisi splitting kernels
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1D NLO Problem

I = lim
�→0

�� 1

0

dx

x
x−�f(x) +

1

�
f(0)

�
We want to calculate the following integral numerically

We regularize the first term by a subtraction term that has the same singularity 
structure but it is a simpler function.

I = lim
�→0

�� 1

0

dx

x
x−�[f(x)− f(0)] + f(0)

� 1

0

dx

x
x−� +

1

�
f(0)

�This is finite and can 
be done numerically.

This is simple and can 
be done analytically.

I =

� 1

0

dx

x
[f(x)− f(0)]
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NLO Subtraction Scheme

σNLO =
�

N
dσB +

�

N+1

�
dσR−dσA

�
�=0

+
�

N

�
dσV +

�

1

dσA

�

�=0

IR singularities!

dσA ∼ dΓ ({p}N+1) V ⊗ |M({p̃}N )|2� �� �FJ ({p̃}N )

HH +Real contributions Virtual contributions

Based on soft and collinear factorization
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Experimenter’s NLO Wish List
Single boson Diboson Triboson Heavy Flavor

Run II Monte Carlo Workshop, April 2001 Run II Monte Carlo Workshop, April 2001 Run II Monte Carlo Workshop, April 2001 Run II Monte Carlo Workshop, April 2001 

V+≤ 5jets
V+bb+≤ 3jets
V+cc+≤ 3jets

VV+≤ 5jets
VV+bb+≤ 3jets
VV+cc+≤ 3jets
WZ+≤ 5jets
WZ+bb+≤ 3jets
WZ+cc+≤ 3jets
Wγ+≤ 3jets
Zγ+≤ 3jets

WWW+≤ 3jets
WWW+bb+≤ 3jets
WWW+cc+≤ 3jets
Zγγ+≤ 3jets
WZZ+≤ 3jets
ZZZ+≤ 3jets

tt+≤ 3jets
bb+≤ 3jets
tt+V+≤ 2jets
tt+H+≤ 2jets
tb+≤ 2jets

Les Houches Workshop 2005Les Houches Workshop 2005Les Houches Workshop 2005Les Houches Workshop 2005
V+3jets

H+2jets
VV+≤ 2jets
VV+bb

ZZZ tt+2jets
tt+bb

V ∈ {W,Z,γ}V ∈ {W,Z,γ}V ∈ {W,Z,γ}V ∈ {W,Z,γ}

Why are these calculations so hard?
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Why do we need parton shower?

H HH +

Real contributions Virtual contributions

+

Born contributions

• We need predictions for LHC and 
Tevatron.

• LO and NLO perturbation theory can give 
predictions only for very inclusive cross 
sections. 2→ 2

• We use parton shower to get prediction for the complete final state 
approximately right.
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Jet event in DIS process
The jet algorithm 
find one fat jet

Electron

H1 jet event

These 
hadrons are 
part of the 
“beam jet” 
when the jet 
resolution is 
crude.

Jet structure at large resolution scale:

Wednesday, February 23, 2011



Jet event in DIS process
The jet algorithm 
find one fat jet

Electron

H1 jet event

These are still 
part of the 
beam jet.

Jet structure at small resolution scale:

Now, they are 
resolved as a 
jet.
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Deep Inelastic Scattering
Let us focus on the initial state radiations

µ = 100 GeVµ = 100 GeV Every measurement has a 
typical resolution scale. 
Decreasing this resolution 
scale we can see more 
partonic (hadronic) activity 
and finer structures.  
Increasing this resolution scale 
we see fatter jets or cruder  
structures. 

γ

Jet
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Deep Inelastic Scattering
Let us focus on the initial state radiations

µ = 25 GeVµ = 25 GeV Every measurement has a 
typical resolution scale. 
Decreasing this resolution 
scale we can see more 
partonic (hadronic) activity 
and finer structures.  
Increasing this resolution scale 
we see fatter jets or cruder  
structures. 

γ

Jet
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Factorization

Hard matrix elements

beam jet

..
..

..
..�

��
�

f
a

/
A

(x
,µ

2
)

�
��

�
C

a
(x

,µ
2
)

Coefficient function
can be calculated in pQCD

PDF function, only 
the running can be 
calculated in 
pQCD

µ
d

dµ
fa/H(η, µ) =

�

b

[Pa,b ⊗ fb/H ](x, µ)

−k2
⊥ > µ2

−k2
⊥ < µ2

µ2
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Hadron-hadron Collision
In hardon-hadron collision the picture is more complicated. 

Resolution scale: 400 GeV
Decreasing the resolution 
scale more and more partons 
are visible and less absorbed 
by the incoming hadrons and 
the final state jets. 

Important observation: The 
total cross section is 
independent of the resolution 
of the measurement (or 
detector).  

We have to also consider the evolution of the final state jets.

Does perturbative QCD 
support this nice intuitive 
picture?
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Cross section

parton distributions

matrix element

σ[F ] =
�

m

� �
d{p, f}m

� � �� �
fa/A(ηa, µ

2
F ) fb/B(ηb, µ2

F )
1

2ηaηbpA ·pB

×
�
M({p, f}m)

�� F ({p, f}m)� �� �
��M({p, f}m)

�
� �� �

observable

The cross section is a phase space integral of all the possible matrix elements  and 
the a convolution to the parton distribution functions.

✗ This is formally an all  order expression and it is impossible to calculate out. 

✗ We can do it at LO, NLO and in some cases NNLO level. 

✗ Lots of complication with IR singularities.

✗ Lots of complication with spin and colors.

✓ The idea is to approximate the matrix elements using factorization 
properties of the QCD matrix element.

➩ We need a general formalism to describe parton shower evolution. 
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Statistical Space

σ[F ] =
�

m

� �
d{p, f}m

�
Tr{ρ({p, f}m)� �� �F ({p, f}m)}

density operator in color ⊗ spin space

Introducing the density operator, the cross section is 

ρ({p, f}m) =
��M({p, f}m)

�fa/A(ηa, µ2
F )fb/B(ηb, µ2

F )
2ηaηbpA ·pB

�
M({p, f}m)

��

=
�

s,c,s�,c�

��{s�, c�}m

��
{p, f, s�, c�, s, c}m

��ρ
��
{s, c}m

��

where the density operator is

In the statistical space it 
is represented by a vector

��ρ
�

=
�

m

1
m!

� �
d{p, f, s�, c�, s, c}m

� ��{p, f, s�, c�, s, c}m

�
� �� �

�
{p, f, s�, c�, s, c}m

��ρ
�

Basis vector in the statistical space
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States

Completeness relation :

1 =
�

m

� �
d{p, f, s�, c�, s, c}m

� ��{p, f, s�, c�, s, c}m

��
{p, f, s�, c�, s, c}m

��

Orthonormal basis:

where

�
{p, f, s�, c�, s, c}m

��{p̃, f̃ , s̃�, c̃�, s̃, c̃}m̃

�
= δm,m̃ δ({p, f, s�, c�, s, c}m; {p̃, f̃ , s̃�, c̃�, s̃, c̃}m̃)

� �
d{p, f, s�, c�, s, c}m

�
≡

� �
d{p, f}m

� �

sa,s�
a,ca,c�

a

�

sb,s�
b,cb,c�

b

m�

i=1





�

si,s�
i,ci,c�

i






Basis: A state with m final state parton with momenta p, color c 
and c’ and spin s’, s is

Physical state:

Fully exclusive cross section to have m parton in the final state 

with fixed quantum numbers is

��{p, f, s�, c�, s, c}m

�

��ρ
�

�
{p, f, ...}m

��ρ
�
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Measurement function

��F
�

=
�

m

1
m!

� �
d{p, f, s�, c�, s, c}m

� ��{p, f, s�, c�, s, c}m

�
F ({p, f}m)

Measurement operators can be also represented by vectors in the statistical space

��1
�
⇔ F ({p, f}m) = 1E.g.: Total cross section

��p⊥
�
⇔ F ({p, f}m) = δ(p⊥ − p⊥,Z)

Transverse momentum 
in Drell-Yan:

The cross section is 

σ[F ] =
�
F

��ρ
�

=
�

m

1
m!

� �
d{p, f, ...}m

�
F ({p, f}m)

�
{p, f, ...}m

��ρ
�

Now, we have to generate the physical states.
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Approx. of the Density Operator
The m+1 parton physical state is represented by density operator in the quantum 

space and by the statistical state in the statistical space. 

ρ
�
{p, f}m+1

�
⇔

��ρ({p, f}m+1)
�

This is based on the m+1 parton matrix elements. They are very complicated 

(especially the loop matrix elements). We try to approximate them by using their 
soft collinear factorization properties. For this we introduce operators in the 
statistical space:

Collinear and soft-
collinear contribution

Wide angle soft 
contributions

This parameter 
represents  the 
hardness of the splitting. 
We will call it shower 
time.

��ρ({p̂, f̂}m+1)
�
≈

� ∞

tm

dt
�
HC(t)� �� � +

� �� �
HS(t)

���ρ({p, f}m)
�

HI(t) = HC(t) +HS(t)

The total splitting operator is 
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Collinear Singularities
The QCD matrix elements have universal factorization property when two external 
partons become collinear

HC ∼

�

l

tl ⊗ t†l Vij(si, sj)⊗ V †
ij(s

�
i, s

�
j)⇔

αs

2π

�

l

1
pi · pj

Pfl,fi(z) + . . .

i�j−−−−→

..
..
.

1

m + 1

i
j

M
m

+
1

⊗

..
..
.

1

m + 1

M
m l

2 2

i

j

Vij

2

Altarelli-Parisi splitting kernels
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Soft Singularities
The QCD matrix elements have universal factorization property when an 
external gluon becomes soft

HS ∼ −

�

l,k
l �=k

p̂l · ε(s) p̂k · ε(s�)
p̂l · p̂m+1 p̂k · p̂m+1

tl ⊗ t†k

pr→0−−−−−→

l

k

�

l,kM
m

+
1

M
m

+
1

M
m

M
m

Soft gluon connects everywhere and the color structure is not diagonal; 
quantum interferences in the color space.
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Shower Time
Now, we should define the t shower time. It is related to the hardness of the 

radiation. Its main purpose is to control the goodness of the approximation. 
We simply use the virtuality of the splitting,

t = log
Q2

0

2pi · pj

For collinear and soft splitting  

0 < t <∞

pi

pj t→∞
pi

pj

The shower time dependence of the splitting operator is

HI(t) =
�

l

Sl δ

�
t− log

Q2
0

2pi · pj

�
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Other Choices
Some people prefers to use the transverse momentum as evolution variable

HI(t) =
�

l

Sl δ

�
t− log

Q2
0

−k2⊥

�

HERWIG uses the emission angle with transverse momentum veto

HI(t) =
�

l

Sl δ

�
t− log

2

1− cosϑij

�
θ
�
−k2⊥ > 1GeV2

�
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Shower Time

Real time picture Shower time picture

Think of shower branching as developing in a “time” that goes from most 
virtual to least virtual.
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Resolvable Splittings
Let us consider a physical state at shower time t,           . This means every parton is 

resolvable at this time (this scale). Now, we apply the splitting operator:

��ρ(t)
�

           operator changes

- the number of the partons, m ➝ m+1
- the color and spin structure
- flavors and momenta

HI(t)

This is good approximation if we allow 
only softer radiations than t, τ > t

Now, let us consider a measurement with a resolution scale which correspond 

to shower time t’

Resolved radiations Unresolved radiations
This is a singular contribution

           operator
- changes only the color structure
-

VI(t)

�
1
��VI(t) =

�
1
��HI(t) What can we do 

about it?

��ρR
∞

�
=

� ∞

t
dτ HI(τ)

��ρ(t)
�

��ρR
∞

�
≈

� t�

t
dτ HI(τ)

��ρ(t)
�

� �� �
+

� ∞

t�
dτ V(�)

I (τ)
��ρ(t)

�

� �� �
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Virtual Contributions
There is another type of the unresolvable radiation, the virtual (loop graph) 
contributions. We have universal factorization properties for the loop graphs. E.g.: 
in the soft limit, when the loop momenta become soft we have

m m This is again a singular 
operator only in the color space.

We can use this factorization to dress up partonic states with virtual radiation. After 
careful analysis one can found that the virtual contribution can be approximated 
by 

��ρV
∞

�
≈ −

� ∞

t
dτ V(�)

I (τ)
��ρ(t)

�

i

j

..
..
.

1

..
..
.

M
(1

)
m

l → 0

i

j

..
..
.

1

..
..
.

M
m

⊗

i

j×

×�
ddl

(2π)d

Same structure like in 
the real unresolved 
case but here with 
opposite sign.
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Physical States
Combining the real and virtual contribution we have got

��ρR
∞

�
+

��ρV
∞

�
=

� t�

t
dτ [HI(τ)− VI(τ)]

��ρ(t)
�

This operator dresses up the physical state with one real and virtual radiations 
that is softer or more collinear than the hard state.  Thus the emissions are 
ordered. Now we can use this to build  up physical states by considering all the 

possible way to go from t to t’.
��ρ(t�)

�
=

��ρ(t)
�

+
� t�

t
dτ [HI(τ)− VI(τ)]

��ρ(t)
�

+
� t�

t
dτ2 [HI(τ2)− VI(τ2)]

� τ2

t
dτ1 [HI(τ1)− VI(τ1)]

��ρ(t)
�

+ · · ·

= T exp

�� t�

t
dτ [HI(τ)− VI(τ)]

�

� �� �

��ρ(t)
�

U(t�, t) shower evolution operator

��ρ(t�)
�

= U(t�, t)
��ρ(t)

�
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Evolution Operator
Back to our cartoon .....

Resolution scale: 400 GeV Decreasing the resolution 
scale more and more partons 
are visible and less absorbed 
by the incoming hadrons and 
the final state jets. 

Important observation: The 
total cross section is 
independent of the resolution 
of the measurement (or 
detector).  

Does perturbative QCD 
support this nice intuitive 
picture?
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Shower Evolution

d

dt
U(t, t�) =

�
HI(t)− VI(t)

�
U(t, t�)

Shower evolution operator satisfy the following equation

From                                  one can see that the shower preserve the total cross 
section

�
1
��VI(t) =

�
1
��HI(t)

�
1
��U(t, t�) =

�
1
��

Unitarity:    

Group decomposition property:

U(t, t�)U(t�, t��) = U(t, t��)
Let us have a physical state evolved to t and consider a measurement F 
with the typical resolution tF < t. For soft or collinear splittings we have

�
F

��ρ(t)
�

=
�
F

��U(t, tF )
��ρ(tF )

�
=

�
F

��ρ(tF )
�

The measurement is insensitive for 
the finer structure, thus they are 
integrated out to 1.

This is depicted in our cartoon!

� t

tF

dτ
�
F

��HI(τ) =
� t

tF

dτ
�
F

��VI(t)

Now the cross section is
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Shower Evolution

d

dt
U(t, t�) =

�
HI(t)− VI(t)

�
U(t, t�)

Shower evolution operator satisfy the following equation

From                                  one can see that the shower preserve the total cross 
section

�
1
��VI(t) =

�
1
��HI(t)

�
1
��U(t, t�) =

�
1
��

Unitarity:    

Group decomposition property:

U(t, t�)U(t�, t��) = U(t, t��)
Let us have a physical state evolved to t and consider a measurement F 
with the typical resolution tF < t. For soft or collinear splittings we have

�
F

��ρ(t)
�

=
�
F

��U(t, tF )
��ρ(tF )

�
=

�
F

��ρ(tF )
�

The measurement is insensitive for 
the finer structure, thus they are 
integrated out to 1.

This is depicted in our cartoon!

� t

tF

dτ
�
F

��HI(τ) =
� t

tF

dτ
�
F

��VI(t)

Now the cross section is

The measurement is insensitive what is 
happening inside the “green cones”. In the 
parton shower everything inside the cones are 
integrated out to 1.

In this measurement 
we resolve jets. The 

resolution is 
represented by the 

“green cones”

�
F

��ρ(t)
�

=
�
F

��U(t, tF )
��ρ(tF )

�
=

�
F

��ρ(tF )
�
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Summary
✓ We have found the the hadronic final states can be understood in a very 

intuitive way (Wilsonian renormalization approach).

✓ We derived parton shower algorithm based on the soft and collinear 
approximation of the QCD tree and 1-loop matrix elements.

✓ This algorithm supports the intuitive picture.

✓ This is probably the most general theory of the parton shower algorithms. 
The available implementations (PYTHIA, HERWIG, ARIADNE) are based on this 
with some additional approximation and special choice of “ingredients”.

? Some of you might be suspicious because we have not defined the 
Sudakov factor. 
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Evolution Equation
We can write the evolution equation in an integral equation form

U(tf , t2) = N (tf , t2)� �� � +

� �� �� tf

t2

dt3 U(tf , t3)HI(t3)N (t3, t2)

“Nothing happens”

“Something  happens”

N (t�, t) = T exp

�
−

� t�

t
dτ VI(τ)

�where the non-splitting operator is 

= +

M
(2
→

2)

U
(t

2
,t

f)

U
(t

3
,t

f)

N
(t

2
,t

f)

N
(t

2
,t

3
)

t2 t2 t2 t3 tftftf
M

(2
→

2)

M
(2
→

2)

. 
. 
. 
.. . . .

Sudakov operator
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Monte Carlo Tools

H

1. Incoming hadron                     (gray bubbles)

➮ Parton distribution function

2. Hard part of the process       (yellow bubble)

➮ Matrix element calculation, cross 
sections at LO, NLO, NNLO level

3. Radiations                                     (red graphs)

➮ Parton shower calculation

➮ Matching to the hard part

4. Underlying event                       (blue graphs)

➮ Models based on multiple 
interaction

5. Hardonization                          (green bubbles)

➮ Universal models 

The structure of the Monte Carlo event generators
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Multiple Interaction
µ = 100 GeVµ = 100 GeV

Let us see how it looks at hadron collider

In hadron-hadron collision the parton 
distribution function also absorbs the 
contribution of the secondary 
interactions.

This is a more complicated  evolution 
than in the DIS case. 

- Is there factorization or can we 
define in a systematic way?

- If yes, how does it work?

-What is the evolution equation?

The evolution operator should be something like

Multiple interaction

UI+MI(t, t
�) = T exp

�� t�

t
dτ

�� �� �
HI(τ)− VI(τ) +HMI(τ)− VMI(τ)� �� �

�
�Single radiations
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Multiple Interaction

µ = 125 GeVµ = 125 GeV

Let us see how it looks at hadron collider

In hadron-hadron collision the parton 
distribution function also absorbs the 
contribution of the secondary 
interactions.

This is a more complicated  evolution 
than in the DIS case. 

- Is there factorization or can we 
define in a systematic way?

- If yes, how does it work?

-What is the evolution equation?

The evolution operator should be something like

Multiple interaction

UI+MI(t, t
�) = T exp

�� t�

t
dτ

�� �� �
HI(τ)− VI(τ) +HMI(τ)− VMI(τ)� �� �

�
�Single radiations

Wednesday, February 23, 2011



Multiple Interaction

µ = 50 GeVµ = 50 GeV
Let us see how it looks at hadron collider

In hadron-hadron collision the parton 
distribution function also absorbs the 
contribution of the secondary 
interactions.

This is a more complicated  evolution 
than in the DIS case. 

- Is there factorization or can we 
define in a systematic way?

- If yes, how does it work?

-What is the evolution equation?

The evolution operator should be something like

Multiple interaction

UI+MI(t, t
�) = T exp

�� t�

t
dτ

�� �� �
HI(τ)− VI(τ) +HMI(τ)− VMI(τ)� �� �

�
�Single radiations
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Multiple Interaction

µ = 25 GeVµ = 25 GeV
Let us see how it looks at hadron collider

In hadron-hadron collision the parton 
distribution function also absorbs the 
contribution of the secondary 
interactions.

This is a more complicated  evolution 
than in the DIS case. 

- Is there factorization or can we 
define in a systematic way?

- If yes, how does it work?

-What is the evolution equation?

The evolution operator should be something like

Multiple interaction

UI+MI(t, t
�) = T exp

�� t�

t
dτ

�� �� �
HI(τ)− VI(τ) +HMI(τ)− VMI(τ)� �� �

�
�Single radiations
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I haven’t talked about....
• Angular ordering (HERWIG)

• Leading color approximations 
(PYTHIA, ARIADNE, ...)

• Implementations

• Spin averaging 

• Coulomb gluons

• Summation of large logarithm

• Matching at LO and NLO level

• .......

• Hardonization

• Underlaying event, multi parton 
interactions

• Hadronic decays

• Tuning and validation

• Other approaches (kT 
factorization)

• .......
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Conclusion
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Conclusion

• These programs are much more than just empirical tools. In principle they can predict 
cross section but you have to know their limitations. 
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• These programs are not `Black Boxes`, not a kind of `Black Art`. If you use them you 
have to know how they work, what is the basic idea behind these algorithms and what 
are their limitations. 
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Conclusion

• These programs are much more than just empirical tools. In principle they can predict 
cross section but you have to know their limitations. 

• These programs are not `Black Boxes`, not a kind of `Black Art`. If you use them you 
have to know how they work, what is the basic idea behind these algorithms and what 
are their limitations. 

Please use the Monte Carlos wisely! 
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