QCD at the LHC ...

... and elsewhere.

Thomas Schörner-Sadenius 帴

OUTLINE

- > Why the LHC why QCD at the LHC?
 - History and basics of QCD
- Soft QCD and minimum bias physics
 - The "Underlying event" (UE)
- Intermezzo: Parton distribution functions
- > Hard QCD: Jet physics at the LHC (and elsewhere)
 - Inclusive jet spectra
 - Dijets and trijets, multijets
 - Jet calibration
 - Extractions of the strong coupling constant
 - Jets and searches for new physics
- Not covered: Flavour physics, identified particles, details on jet algos, forward and diffractive physics, photons, trimming, pruning ...

WHY A NEW MACHINE?

The Standard Model (SM) is in excellent agreement with basically all measurements – so why worry?

- > We have not yet found the Higgs boson!
 - Without a Higgs, the SM diverges at 1 TeV!
- > The SM is not really simple or beautiful!
 - Too many free parameters! Explanation in fundamental theory?
- > No gauge-coupling unification!
 - The three SM couplings do not unify at highest energies!
- > No dark-matter candidate!
 - Galaxy rotation curves, structure formation, etc.!
- > More fundamental questions!
 - Gravity? Gauge structure? Why 3 generations? Connection between leptons and quarks? Hierarchy / fine-tuning problem? Baryon asymmetry? ...

WHY A LARGE HADRON COLLIDER?

 $E = mc^2$

- We know that new particles are heavy
 → need high energy to produce them!
- > $\lambda \approx \hbar/p$
 - Because of uncertainty principle, smaller substructures require higher momentum.
- > But: synchrotron radiation!
 - Energy lost per orbit:

- → large radius to minimise losses!
- Discoveries with hadron machines!
 - Then precision physics at lepton colliders.
 - By the way: bosons discovered in Europe!
- Colliders: higher energy for same E_{beam}!

 $\sqrt{s} = 2E_{beam}$ vs $\sqrt{s} \approx \sqrt{2mE_{beam}}$

WHY QCD?

The events at the LHC are dominated by QCD!

- Highest rates: inelastic pp collisions (mostly "soft QCD")!
 - Protons "barely scraping each other".
 - No hard jets, no hard scale.
 - Difficult to describe (perturbation theory not applicable)
- > Dominating hard processes:
 - (Di)jet production (with or without flavour)
 - Perturbatively accessible.
- LHC is first of all a QCD machine
 - "Bread-and-butter physics"?
 - Need to understand backgrounds!

THE PATH TO QCD – HISTORY (1)

Early classifications of `hadrons' (`particle zoo')

- Based on charge, spin, isospin (Heisenberg et al.: SU(2)-based theories, grouping for example proton and neutron together ...)
- Invention' of `quarks' as building blocks of hadrons by Gell-Man, Zweig: up, down (strange), ...
- > Parallel: scattering experiments on nuclear/proton substructure:
 - Evidence for proton substructure: Partons (Bjorken / Feynman).

Invention of the `Quark-Parton Model'

Proton consists of pointlike partons/quarks which carry fractional electric charge and a fraction x of the proton's momentum!

> Problems!!!!

- The Δ^{++} : spin-3/2 particle built from 3 identical up quarks with parallel spins????
- Scaling violations in deep-inelastic scattering experiments!!!
- How do electrically charged particles hold together in the proton????
- Where is the rest of the proton momentum if not in the quarks????

THE PATH TO QCD – HISTORY (2)

Solution: QCD

- A gauge theory along the lines of what was established for electro-weak interactions!
- Introduction of a new degree of freedom: colour!
- > Experimental evidence: Discovery of gluons (here at PETRA / DESY!)
 - $e^+e^- \rightarrow qqg$ events at the PETRA collider 1979!

BASICS OF QCD

> Quantum Chromodynamics (QCD) – the theory of strong interactions

- Non-abelian gauge field theory based on an SU(3)_C symmetry.
- QCD describes interactions between coloured particles: quarks and gluons.
- Developed in the 1970es by Fritzsch, Gell-Mann, Leutwyler, Gross, Weinberg, etc.

- We have three colour charges (`red', `blue', `green') and coloured gauge bosons
 - This leads to 8(+1) gauge bosons (gluons) in contrast to QED (1 neutral photon)
 - ... and also to other remarkable features (next slides).

SALIENT FEATURES OF QCD (1)

- > Asymptotic Freedom (NP2004 Gross, Wilzcek, Politzer)
 - Relevant parameter: Coupling strength between coloured particles: α_s!

$$\alpha_{s}(Q) = \frac{\alpha_{s}(M_{z})}{1 + \alpha_{s}(M_{z}) \cdot b \cdot \ln(Q^{2}/M_{z}^{2})}$$

- At large energies / small distances, quarks are `free' inside the proton / hadron.
- > Confinement:
 - At large distances / small energies, the coupling increases and diverges.
 - There are no free quarks!
 - Solution of confinement is one of the Millenium Prize problems (Clay Mathematics Institute).

SALIENT FEATURES OF QCD (1)

- > Asymptotic Freedom (NP2004 Gross, Wilzcek, Politzer)
 - Relevant parameter: Coupling strength between coloured particles: α_s!

 $\alpha_{s}(Q) = \frac{\alpha_{s}(M_{z})}{1 + \alpha_{s}(M_{z}) \cdot b \cdot \ln(Q^{2}/M_{z}^{2})}$

- At large energies / small distances, quarks are `free' inside the proton / hadron.
- > Confinement:
 - At large distances / small energies, the coupling increases and diverges.
 - There are no free quarks!
 - Solution of confinement is one of the Millenium Prize problems (Clay Mathematics Institute).

SALIENT FEATURES OF QCD (2)

> How to tackle QCD?

 Perturbative QCD: At high energies, the coupling is small and cross sections can be evaluated as power series in α_s:

$$\sigma = C_0 + \alpha_s \cdot C_1 + \alpha_s^2 \cdot C_2 \dots = \sum_{n=0}^{\infty} \alpha_s^n \cdot C_n$$

The coefficients can typically be evaluated to some (small) order: LO, NLO, NNLO In addition methods to sum up other large contributing terms (large logs).

- Lattice QCD: can give particle spectra, indications for the value of the coupling, ...
- Effective theories
- 1/N expansions

•

SALIENT FEATURES OF QCD (2)

> Hadron spectroscopy in lattice QCD

OVERVIEW: A QCD EVENT

OVERVIEW: A QCD EVENT

SOFT vs. HARD QCD IN THE EXPERIMENT

SOFT vs. HARD QCD

SOFT QCD

"MINIMUM BIAS" PHYSICS

- In most pp collision events:
 - No hard scale and little activity in the event. Trigger only on small number of tracks or "forward" activity.
 - Remember the cross sections: Only very few of these events will have "hard" signatures (jets, heavy particles)
 - Resulting data sample: Large admixture of diffractive events with no or little colour flow ("rapidity gaps")
 → modelling?

Experimentally difficult to define: E.g. ATLAS and CMS have different definitions (including / excluding parts of the diffractive components)

- In the processes of parton showering and fragmentation of the finalstate quarks, numerous stable particles (pions, protons, ...) are produced.
 - Measure the number of charged particles as functions of transverse momentum p_T and pseudorapidity η and test models.
 - Measure energy dependence of average transverse momentum and average charged particle multiplicity.
 - Measure individual particles, for example K, Λ , J/ Ψ , and ratios of these.
 - Universality of showering / fragmentation process?
- Note that it is especially interesting to measure the same distributions at different centre-of-mass energies and at different machines in order to
 - Be able to compare / verify different measurements and
 - To learn about the behaviour of distributions and average values with energy.
 - To adjust ("tune") the models we have.
 - → Compare experimental results from ISR, SppS, HERA, LEP, LHC, RHIC, Tevatron

- Measurement of p_T, pseudorapidity, number of particles / tracks
 - Treatment of diffractive component in the experiments?
 - Measurement down to 100 MeV possible!
- Measurement difficult!
 - Uncertainties: Tracking/trigger efficiency, modelling, unfolding (few %)
 - Models have problems!
 - "Tuning" of MC models systematic adaption of model parameters?

- Measurement of p_T, pseudorapidity, number of particles / tracks
 - Treatment of diffractive component in the experiments?
 - Measurement down to 100 MeV possible!

Measurement difficult!

- Uncertainties: Tracking/trigger efficiency, modelling, unfolding (few %)
- Models have problems!
- "Tuning" of MC models systematic adaption of model parameters?

> Averaged charged particle multiplicity:

- Models underestimate increase with centre-of-mass energy.
- Possible to find phenomenological parametrisations that describe all data points.

PARTICLE PRODUCTION

> ... energy dependence of charged hadron multiplicity:

TSS: QCD @ LHC

FEW SLIDES: THE UNDERLYING EVENT

> "Everything except the hardest $2\rightarrow 2$ interaction in the event"

- Pile-up several pp collisions
- Multi-parton interactions.
- Beam remnants, other soft stuff
- Potential impact on all analyses!
- Study using, for example, energy flow in different regions.

FEW SLIDES: THE UNDERLYING EVENT

> "Everything except the hardest $2\rightarrow 2$ interaction in the event"

- Behaviour with CMS energy?
- Modelling?

- Pile-up several pp collisions
- Multi-parton interactions.
- Beam remnants, other soft stuff
- Potential impact on all analyses!
- Study using, for example, energy flow in different regions.

INTERMEZZO: PDFs (and factorisation)

Factorisation of cross section into soft and hard (or long- and short range contributions)

$$\sigma(s) = \sum_{ii} \iint dx_1 dx_2 f_{i/p}(x_1, Q^2) f_{j/p}(x_2, Q^2) \widehat{\sigma}_{ij}(x_1, x_2, Q^2)$$

- Functions f_{i/p}: parton distribution functions; need to be obtained from experiment!
- TSS: QCD @ LHC

Hard scales, small α_S: expand "hard scattering" into powers of α_S.

INTERMEZZO: PDFs (and factorisation)

Factorisation of cross section into soft and hard (or long- and short range contributions)

$$\sigma(s) = \sum_{ii} \iint dx_1 dx_2 f_{i/p}(x_1, Q^2) f_{j/p}(x_2, Q^2) \widehat{\sigma}_{ij}(x_1, x_2)$$

Functions f_{i/p}: parton distribution functions; need to be obtained from experiment!

TSS: QCD @ LHC

Plug in any hard matrix element you are interested in!

> Shown: ME for $2\rightarrow 2$ QCD events.

INTERMEZZO: PDFs

- > Remember factorisation: $\sigma(s) = \sum_{ij} \iint dx_1 dx_2 f_{i/p}(x_1, Q^2) f_{j/p}(x_2, Q^2) \widehat{\sigma}_{ij}(x_1, x_2, Q^2)$
 - Functions f_{i/p} describe structure of the proton probability to find parton of type i (quark, antiquark, gluon) with momentum fraction x₁ if looking with resolution Q².
 - Problem: Parton distributions not calculable from first principles need precision data to derive them → HERA electron-proton collider!

INTERMEZZO: PDFs

- Proton parton distribution functions the structure of the proton
- > Remember factorisation:
- $\sigma(s) = \sum_{ij} \iint dx_1 dx_2 f_{i/p}(x_1, Q^2) f_{j/p}(x_2, Q^2) \widehat{\sigma}_{ij}(x_1, x_2, Q^2)$
- Functions f_{i/p}, f_{j/p} describe structure of the proton probability to find parton of type I (quark, antiquark, gluon) with momentum fraction x₁ if looking with resolution Q².
- Problem: Parton distributions not calculable from first principles need precision data to derive them → HERA electron-proton collider!
- Electron / photon acts as magnifying glass for proton structure; resolution ~1/Q !!!

INCREASING RESOLUTION $\lambda \propto \frac{1}{Q}$

HERA INPUT

Low x: With increasing Q^2 (resolution), more radiated gluons and quark pairs from $g \rightarrow qq$ are seen!

High x: With increasing Q², less and less un-radiated partons are left here!

FROM STRUCTURE FUNCTIONS TO PDFs

- > By means of "DGLAP evolution"
 - > Connection F_2 to $f_{i/p}$:

 $F_2 = F_2(x,Q^2) = \sum_i e_i^2 x f_{i/p}(x,Q^2)$

- Done by several groups, with slightly different concepts:
 - HERA-PDF, CTEQ, MSTW, AB(K)M, JR, NNPDF
- Strong rise of gluon density one of the important results of HERA!!!
- > PDFs available via different libraries:
 - PDFLIB
 - LHAPDF
 - Interfaced to experiment-specific softwar

PDFs AT THE LHC

- Currently LHC experiments use the existing PDFs based on HERA and other data.
- Soon: crucial tests of PDFs using "candle" processes like W/Z production:
 - Input data from LHC!

PDFs AT THE LHC

- Currently LHC experiments use the existing PDFs based on HERA and other data.
- Soon: crucial tests of PDFs using "candle" processes like W/Z production:

HARD QCD AND JETS

... there's more to events in hadron-hadron collisions!

TSS: QCD @ LHC
JETS IN HADRON COLLISIONS

> Remember factorisation:

- Final-state quarks and gluons cannot exist freely → parton shower and hadronisation → bunches of hadrons → "hadronic jets".
 - Simplest QCD signature: (balanced) pair of jets.
 - Need "jet algorithm" to reconstruct jet (four-momentum) from hadrons / energy deposits in the detector.
 - Then measure jet properties like transverse energy and momentum, (pseudo) rapidity, multiplicity, substructure, mass, dijet mass, angular correlations, ...
 - Compare to QCD theory!

JETS IN HADRON COLLISIONS

> Remember factorisation:

 $\sigma = \sum_{ij} f_{i/p} \otimes \hat{\sigma}_{ij} \otimes f_{j/p}$

- Simplest 2→2 process with incoming partons:
 - qq→qq, qg→qg, gg→gg, gg→qq

> All $2 \rightarrow 2$ processes.

 All in current calculations, plus virtual+real corrections (everything up to "next-toleading" order (NLO).

JET PHYSICS

> ... at different experiments:

JET PHYSICS

> ... at different experiments:

TSS: QCD @ LHC

JET PHYSICS: BASICS

- > Jets: two-fold purpose in high-energy physics
 - Tool for studying (hard QCD) interactions
 - Object of study in itself: Fragmentation etc.
- Jets although clearly visible to the naked, untrained eye are neither a simple nor a well-defined concept!
 - A jet algorithm is a mathematical prescription for clustering the objects of the final state (if possible both in the experiment and for theoretical predictions and models).
 - Different classes of algorithms, different fields of applications (hadron colliders, lepton colliders, HERA, …), different physics questions → jet physics is a science in itself!
 - Jet algorithms shall fulfill a number of requirements (without completeness): theoretically safe, easy to handle, small hadronisation corrections, unbiased, ...
- Currently two classes of algorithms used: cluster algorithms and conebased algorithms
 - Historically, the Tevatron experiments tended to cone-based algorithms, e+e- and HERA to clustering algorithms;
 - At LHC, both collaborations study a multitude of different algorithms.

JET PHYSICS: RESULTS FROM LEP

> In ee \rightarrow qq(q,q) or in $\gamma\gamma$ collisions:

TSS: QCD @ LHC

JET PHYSICS: RESULTS FROM HERA (1)

> In photoproduction, in deep-inelastic scattering, in diffraction

TSS: QCD @ LHC

JET PHYSICS: RESULTS FROM HERA (1)

> In photoproduction, in deep-inelastic scattering, in diffraction

JET PHYSICS: RESULTS FROM HERA (2)

Comparison of 1,2,3 jet production!

Clearly visible: Effect of α_s for each additional radiation (plus phase space)

TSS: QCD @ LHC

JET PHYSICS: RESULTS FROM HERA (2)

Comparison of 1,2,3 jet production!

Clearly visible: Effect of α_s for each additional radiation (plus phase space)

TSS: QCD @ LHC

JET PHYSICS: RESULTS FROM HERA (2)

Comparison of 1,2,3 jet production!

Clearly visible: Effect of α_s for each additional radiation (plus phase space)

JET PHYSICS: RESULTS TEVATRON

Measuring jets up to energies of 600 GeV!!!!

Nice description by NLO QCD calculations! In contrast to HERA, rather experimentally limited (jet energy scale uncertainty).

TSS: QCD @ LHC

JET PHYSICS AT THE LHC

> Tests of hard QCD, and discovery potential (e.g.dijet resonances, later)

JET PHYSICS AT THE LHC

> Tests of hard QCD, and discovery potential (e.g.dijet resonances, later)

TSS: QCD @ LHC

JETS IN HADRON COLLISIONS

Inclusive jet cross section, CMS

JET PHYSICS

Inclusive jets measured by CMS compared to NLO calculations corrected for non-perturbative effects.

• Few % difference in JES between algos \rightarrow 10% on the xsec

Sood description by QCD calculations. Uncertainties depend a lot on eta and p_T, room for improvement!

JET PHYSICS

Inclusive jets measured by ATLAS compared to NLO calculations corrected for non-perturbative effects.

> Good description by QCD calculations.

INCLUSIVE JETS - WORLD DATA

- Overview of jet production data from various colliders and experiments.
- Excellent agreement of data with NLO QCD calculations
- QCD as a "precision theory"!!!
- Important input to the understanding of backgrounds to searches.

DI/TRIJETS/MULTIJETS

- Remember factorisation: Each additional jet suppressed by α_S.
- More jets / final-state particles
 more complex QCD dynamics!
- > Many interesting studies:
 - Measurements of strong coupling in ratios often uncertainties cancel (later)!

DI/TRIJETS/MULTIJETS

- Remember factorisation: Each additional jet suppressed by α_S.
- More jets / final-state particles → more complex QCD dynamics!
- > Many interesting studies:
 - Angular correlations e.g. Δφ, angle between two hardest jets.

TSS: QCD @ LHC

JET RECO AND JET ALGOS (SHOOOORT)

Calorimeter Jets

Jets clustered from ECAL and HCAL deposits (Calo Towers) Accordingly:

Calo MET

neutral hadron

charge

Particle Flow Jets (PF)

Cluster Particle Flow objects: Unique list of calibrated particles "a la Generator Level" Accordingly:

PF MET

F. Beaudette 01/22.7 17:15 Jet-Plus-Track Jets (JPT)

Subtract average calorimeter response from CaloJet and replace it with the track measurement Accordingly:

Track Jets

Reconstructed from tracks of charged particles, independent from calorimetric jet measurements

Jet algorithms – a field of its own!

- -"Cone" vs "clustering" algorithms!
- New developments since the times of
 - LEP, HERA and the Tevatron, active field.
- Seedless safe cone algorithms (SISCone)
- Jet trimming and pruning ...

- ...

CMS JET SCALE CALIBRATION

Factorized approach:

JETS AND THE STRONG COUPLING

> One example: HERA jet data

THE STRONG COUPLING: SUMMARY

THE STRONG COUPLING: SUMMARY

TSS: QCD @ LHC

DIJETS AND NEW PHYSICS

- In principle already in LO two jets.
- Looking for correct description of QCD radiation and new physics.
- For example in decays of heavy gauge bosons Z' or excited quarks q*→qq.
- New limits by LHC already now!!!

JET PHYSICS: DISCOVERY POTENTIAL?

TSS: QCD @ LHC

DIJETS AND NEW PHYSICS

> ATLAS on excited quarks $Q' \rightarrow jj$:

0.4 < M (q*) < 1.29 TeV excluded at 95% C.L.

Latest published limit: CDF: 260 < M (q*) < 870 GeV

TSS: QCD @ LHC

SUMMARY

Covered a few basics and some history of Quantum Chromodynamics

> Soft physics:

- Difficult to model, perfect to "tune" the MC models
- > Jets as an important tool for
 - QCD studies
 - Background studies for new physics searches
 - Jets as active field of research in themselves
- > PDFs, and extractions of strong coupling constant, ...
- Jets and new physics
 - ... for example in dijet mass spectra.
 - (But there is much more to it ...)

Searches for Di-Jet Resonances

Model Name	x	Color	1 ^p	F/(2M)	Final-state Partons	
String	S	mixed	mixed	0.003-0.037	aā, aa, ee and ae	
Axieluon	Ă	Octet	1+	0.05	49, 49, 88 and 48 aā	
Coloron	C	Octet	1-	0.05	aā	
Excited Ouark	q*	Triplet	$1/2^{+}$	0.02	ag	- 1
E6 Diquark	Ď	Triplet	0+	0.004	99	
RS Graviton	G	Singlet	2+	0.01	99,88	
Heavy W	W'	Singlet	1-	0.01	99	
Heavy Z	Z	Singlet	1-	0.01	99	
/qd) up/op 10 ²	6 Prel	M In In Iminary	> 354 Ge , η ₂ I < 1.4 — Data (L = — QCD Pyt] 10% JES	eV 3 = 120 nb ⁻¹) thia + CMS simulati 3 uncertainty	on Imministration	
10 ⁻³	I I I	1000	15(95% Exc	lusi

DiJet Mass (GeV)

CMS PAS EX0-10-001

Properties of new particles expected
 to have significant BF for the decay into di-quark, di-gluons, quark-gluon

95% Exclusion limits: String resonances with mass<1.67TeV

August 6th 2010

Ilaria Segoni - CMS First Physics Results

TSS: QCD @ LHC

MINIMUM BIAS, PARTICLE PRODUCTION

> Averaged charged particle multiplicity:

Models underestimate increase with centre-of-mass energy.

PARTON DISTRIBUTION FUNCTIONS

- > Why does $f_{i/p}$ depend on Q²? $f_{i/p} = f_{i/p}(x,Q^2)$

 - Virtual processes in the hadron: See more of the inner life when increasing the resolution (the scale / the energy, decreasing the distance, get closer) \rightarrow change of probabilities to find quarks with certain properties.

TSS: QCD @ LHC

JET PHYSICS: ALGORITHMS

- Cone algorithms: Aim at minimising the relative transverse momentum in cones of fixed sizes (directions of largest energy flow in the event).
- Clustering algorithms: "Resumming" the parton showering / fragmentation process, using some distance criteron:

JET PHYSICS: ALGORITHMS

- Cone algorithms: Aim at minimising the relative transverse momentum in cones of fixed sizes (directions of largest energy flow in the event).
- Clustering algorithms: "Resumming" the parton showering / fragmentation process, using some distance criteron:

All particles clustered to a number of jets !!!
JET PHYSICS: ALGORITHMS

- Cone algorithms: Aim at minimising the relative transverse momentum in cones of fixed sizes (directions of largest energy flow in the event).
- Clustering algorithms: "Resumming" the parton showering / fragmentation process, using some distance criteron:

All particles clustered to a number of jets !!!

TSS: QCD @ LHC

ATLAS JET SCALE CALIBRATION

- Sequential correction procedure to aid the calibration (non-uniformity, energy loss, leakage, pile-up, non-compensation)
 - EM+JES: bring jets from EM scale to had scale
 - GS: jet-by-jet info about properties of jet
 - GCW: correct individual cells for different response to had and EM depositions.
 - LCW: cluster correction with MW
 - Result: 7% scale uncertainty above 100 GeV! 0.18

AntiK, R=0.6, 0.3<hloredrefuelded Norte Carlo QCD iets

 10^{2}

2×10

30 40

20

EM+JES

10

p_t_[GeV]

ATLAS Preliminary

TSS: QCD @ LHC

Relative JES Systematic Uncertainty

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

ATLAS JET ENERGY RESOLUTION

- > Jet energy resolution measured in situ using dijet asymmetry or "bisector" technique.
- > MC describes data resolution within 14% for jets with $20 < p_T < 80$ GeV.

TRIMMING, TUNING, PRUNING

> In

CALORIMETERS: JETS

- Hadronic jets one of the main tasks of calorimeters. Very simple application (but very important for early data taking, confirmation of SM, etc.): incklusive and di-jet distributions.
- Large field: different algorithms (k_T, anti-k_T, SisCone, …) with different radii running on a variety of objects.

Use asymmetric dijet method to estimate jet p_T resolution: Difference in p_T (partly) due to resolution!
→ Already now better than design value of 100%/sqrt(E)!

Searches for excited quarks: $q^* \rightarrow jj$

Looked for di-jet resonance in the measured M(jj) distribution \rightarrow spectrum compatible with a smooth monotonic function \rightarrow no bumps

$0.4 < M (q^*) < 1.29 \text{ TeV}$ excluded at 95% C.L.

Latest published limit: CDF: 260 < M (q*) < 870 GeV

□ Experimental systematic uncertainties included: luminosity, JES (dominant), background fit, ...
 □ Impact of different PDF sets studied → with CTEQ6L1: 0.4 < M (q*) < 1.18 TeV

TSS: QCD @ LHC

Introduction to Terascale Physics 2011

page 78