Welcome to DESY!

What is DESY and what kind of research is done here?

Introductory school "Terascale Physics" DESY, 23/02/2011

Helmholtz Alliance

Elina Fuchs

DESY- Press and Public Relations (PR) Master student in theory group

What is DESY?

Deutsches Elektronen-Synchrotron (German electron synchrotron) DESY

A national research centre of the

Established: 1959 in Hamburg,

1992 in Zeuthen

- > Annual budget: 192 million euros
 - 90% Federal Ministry of Education and Research
 - 10% city of Hamburg and federal state of Brandenburg

Helmholtz Alliance of German research centres.

- Germany's largest scientific organisation
 - 16 research centres
 - 30 000 employees
 - 3 billion euros annual budget

- Fundamental research to solve major challenges facing society, science and industry
- > long-term research projects

Who works at DESY?

- > Approximately 2000 employees
 - Among them 650 scientists
- Training programs
 - More than 100 young people trained in commercial and technical jobs
- Young scientists
 - Around 700 graduate students, PhD students and postdocs
- Guest researchers
 - 3400 from 280 universities/ institutes in 40 countries annually

- > Opportunities for students:
 - Summer student program (!!)
 - Master/ diploma thesis
 - PhD

What kind of research is done at DESY?

≃0,01 m **Basic research** Kristall Crystal 1st : fundamental questions in science 1/10.000.000 2nd : applications later 10⁻⁹m Molekül Forschung mit Photonen Research with Photons Molecule Research with photons 1/10molecular and atomic structures with a 10⁻¹⁰ m special light from particle accelerators Atom Atom > Accelerators 1/10.000 Development, construction and operation of particle accelerators used for particle physics and research 1/10 with photons 10⁻¹⁵ m Proton Particle physics Proton eilchenphysik article Physics fundamental particles and forces that 1/1.000 make up our universe $< 10^{-18} \,\mathrm{m}$ Elektron. Quark F Q Electron. Quark Elina Fuchs | DESY - PR | Page 5

What is a particle accelerator/collider?

- Charged particles (electrons, protons, ...)
 - accelerated by electric fields
 - deflected by magnetic fields

- Solutions: Heavier particles
 - Storage rings with a larger circumference

Which accelerators are there at DESY?

The history of accelerators at DESY.

Development of accelerators.

- Energy frontier:
 - from the first cyclotron (Lawrence, Berkeley 1931)
 - to the Large Hadron Collider (2008)

TESLA technology:

- Cavities
- Superconducting

 \rightarrow need low temperatures

 Developed at DESY

Research with photons.

> Synchrotron radiation is light with special characteristics

- Very intensive
- Very strongly focused
- Very broad spectrum (wavelength can be chosen according to the needs of the experiment)

> Particle accelerators as synchrotron radiation sources

- Storage rings: DORIS III (HASYLAB) and PETRA III
- Free-electron lasers: FLASH and XFEL

Applications of synchrotron radiation.

Structural analysis, e.g. of biomolecules

From protein crystals ... via diffraction images ... to the 3D structure of ribosomes

Structure of ribosomes: Nobel Prize in Chemistry 2009 (Ada Yonath)

- > Physics: Material science, plasmas
- > Biology: proteins,...
- > Chemistry, geology, medicine,...
- Arts: hidden portrait in Van Gogh's painting Grasgrond

PETRA III & FEL: The capabilities of our facilities.

> PETRA III

 Incoherent light beam can only probe materials with a crystalline structure

- Crystals
- Freeze images of the nanocosm

- Free-electron laser
 - Coherent light beam can also probe materials with an irregular structure

- Noncrystalline solids
- Biological substances
- Live observations of the nanocosm

The future: European X-ray Free-Electron Laser (XFEL)

- Revolutionary light source for fundamental research with ultra-short X-ray flashes
 - Length: 3,4 km
 - Completion: 2014
- > Applications:
 - Observation of single molecules
 - Filming chemical reactions

Acceleration technology developed at DESY

Successfully tested at the prototype FLASH

The beginnings of particle physics.

- Around 400 BC the void and ἄτομος (Demokritos and Leukippos)
- > 19th century Periodic table of the elements (Mendelejew, Meyer)
- 1897 Discovery of the electron (*Thomson*)
- > 1903 Thomson's atomic model (Plum pudding model)

From atoms to elementary particles.

> 1909 – Rutherford experiment

- Scattering of alpha particles off a gold foil
- small fraction of the particles is deflected by a large angle or even reflected
- > 1911 Rutherford model
 - The mass and the positive charge of the atoms is concentrated in a tiny, compact nucleus

> 1913 – Bohr model

- The electrons move on *quantised* circular orbits around the nucleus
- This model explains the atomic spectral lines

➤ Around 1950 until today – Discovery of new particles at particle accelerators → particle zoo

Smallest constituents: elementary particles

How do we know all this?

> Investigation of the structure of known particles in scattering experiments

High energy = High resolution

- Creation of new, heavy particles according to E=mc²
 - Light, known particles with a large kinetic energy —> new, heavier particles

The standard model of particle physics.

A closer look at particles and forces.

- > All matter consists of point-like, indivisible elementary particles
 - Protons and neutrons consist of quarks

Forces are mediated by the exchange of particles

Proton structure investigated at HERA

- Constituents: quarks and gluons
- Carry momentum fraction

Hadron-Elektron-Ring-Anlage (HERA).

- > HERA model: built by many nations
- Electron-proton storage ring
 - Circumference: 6,3 km
 - Start of construction: 1984
 - Running period: 1992 2007
 - Data analysis: until 2014
 - Unique particle accelerator of this kind: e p

> Beam properties

- Energy: protons 900 GeV, electrons 30 GeV
- 210 bunches, $\simeq 10^{13}$ particles of each sort
- Bunch crossing every 96 ns $0.3 \times 0.1 \times 8 mm$
- Electron beam dimension:
- > 4 experiments
 - H1, ZEUS multi-purpose
 - Hermes: proton spin
 - HERA B:B-mesons, strong force

Large Hadron Collider (LHC) at CERN.

Proton-proton storage ring

- Circumference: 27 km
- strongest accelerator worldwide
- measurements: since 2009

> Objectives:

- Discover the Higgs particle
- Discover new particles
 - beyond the standard model

DESY involved: particle detectors CMS and ATLAS, accelerator development and theory

The Future: International Linear Collider (ILC).

- Electron-positron linear accelerator
 - In planning stage, decision on construction and location by 2012
 - Length: More than 30 km
- > Objectives:

international linear collider

Elina Fuchs | DESY - PR | Page 21

- Precision measurements of the new physics (hopefully) discovered at the LHC
- Acceleration technology developed at DESY (FLASH, European XFEL)
- DESY also involved in the development of the particle detectors

The interplay between theory and experiment.

Further Open Questions ...

οἶδα οὐκ εἰδώς

- I know that I don't know (Sokrates)

- What are the origin and the fate of the universe?
 - Big bang
 - Why is the universe made of matter and not of antimatter?
 - What is dark energy?
- > What is dark matter?
 - A new elementary particle, or several?
- > Additional space-time dimensions?

Is Supersymmetry realised in Nature?

Enjoy the guided tour!

Elina Fuchs | DESY - PR | Page 24