Background particles in the Tracker Subsystem: γ + laser

Arka Santra, November 30, 2021 Weizmann Institute of Science, Rehovot, Israel

• γ +laser setup • 600 um target (CDR had 35 um target). • Looked at the background particles: • Electrons • Photons Positrons Neutrons • Protons Pions Plots from 1.27 BX of background, plots normalized to 1 BX. hit in the tracker).

Plots from the tracks intersecting the tracker plane (not necessarily making a

Electrons in Outer Stave, last layer of tracker: electron side

Photons in Outer Stave, last layer of tracker: electron side

Positrons in Inner Stave, first layer of tracker: electron side

Neutrons in Inner Stave, first layer of tracker: electron side

Summary table of the number of background particles

Only photon beam, g+laser	Stave 0 (Inner stave, first layer, positron side)	Stave 7 (Outer stave, last layer, positron side)	Stave 8 (Inner stave, first layer, electron side)	Stave 15 (Outer stave, last layer, electron side)
Electrons/BX	187649.6	29680.3	200624.4	37570.9
Photons/BX	2354440.9	515785.8	2406265.4	760976.4
Positrons/BX	90575.5	20332.3	79566.1	13406.3
Neutrons/BX	60594.5	54752.0	62758.3	81299.2
Protons/BX	122.0	30.7	129.9	33.9
Pions/BX	74	13.4	75.6	17.3

Comparison with CDR samples

g+laser	Electrons/BX (CDR)	Electrons/BX (Now)	Gamma/BX (CDR)	Gamma/BX (Now)
Inner stave, first layer	53.2	187649.6	1347.8	2354440.9
Outer stave, last layer	13.5	29680.3	491.4	515785.8

Electrons and photons now are 10^3 times more in number.

Summary

- New samples with 600 um thick target.
 - Electrons are mostly coming from the junction of vacuum window and wall separating tracker layer and beam pipe.
 - Photons are everywhere, but they will not create hits on the tracker layers.
 - Positrons are also coming mostly from the junction of vacuum window and wall separating tracker layer and beam pipe.
 - Neutrons are coming from the dump.
 - Very low number of protons and pions.
- CDR samples (with 35 um thick target) had much lower number of background \bullet particles.

Bonus slides

Positrons in Outer Stave, last layer of tracker: positron side

Positrons in Outer Stave, last layer of tracker: electron side

Neutrons in Outer Stave, last layer of tracker: positron side

Neutrons in Outer Stave, last layer of tracker: electron side

gamma+laser background (CDR geometry)
Samples produced by Sasha
Background particles electrons and photons.
Plots from the tracks intersecting the tracker plane (not necessarily making a hit in the tracker).

Electrons in Inner Stave, first layer of tracker

• Very low number of background electrons.

- E < 2 MeV mostly.
- Maximum electrons are coming from the junction of magnet and vacuum chamber.

Electrons in Outer Stave, last layer of tracker

 Very low number of background electrons to see anything conclusive.

- E < 2 MeV mostly.
- Maximum electrons are coming from the junction of magnet and vacuum chamber.

Photons in Inner Stave, first layer of tracker

- Again many photons.
 - Many sources of them.

- Some photons from before the IP, but low energetic and low rate.
- High energetic photons are from x=0 and z>1000 and z<1500 mm, after the IP.
- Some are from the magnet.
- Some photons are from the photon converter at z> 8000mm.

Photons in Outer Stave, last layer of tracker

• Not many photons as the first layer.

- Some photons from ¹√apl∃⁻
 before the IP, but low energetic and low rate.
- High energetic photons are from x=0 and z>1000 and z<1500 mm, after the IP.
- Some are from the magnet.
- Some photons are from the photon converter at z> 8000mm and shielding at z>7500.