
Terascale Monte Carlo School 2011

Event Generation in ATLAS

Liza Mijović for the ATLAS DESY group

Hamburg, 17th Mar. 2011

1 / 17

Event Generation in ATLAS

Event Generation is done within (C++) Athena framework with (part of the)
generator configuration done with (Python) JobOptions file; this implies:

differences in generator configuration syntax (wrt. standalone),

using standard generator installations/versions rather than installing the
generators locally,

using pre-defined scripts to run the generators.

While this means learning some additional syntax, it has some important benefits:

many aspects of the generation need to be set to the same values for the bulk of
the samples (masses, couplings, tunes. . .); within Athena these are conveniently
collected in common files that are #included in the files steering the generation.

Event generation used for the central production is reproducible.

The existence of rules how the events need to be generated also imply you know
events were generated in case it wasn’t you who was running the generator.

The aim of the ATLAS-side tutorial is to provide an overview of the event
generation and give you hands-on experience with both running the generators and
retrieving information about the central production generator runs. This talk is
predominantly aimed at the former, the Tutorial exercises at the latter.

2 / 17

Event Generation Schema

Q: Which generators can be used acc. to this schema?

A: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/MonteCarloWorkingGroup

3 / 17

Using LHEF Generators

LHEF = Les Houches Event File Format:

specialized generators (Alpgen, MC@NLO, POWHEG-box . . .) produce only
parton level output,

parton shower and hadronization should be provided by a general purpose
generator (Herwig(++),Pythia(8)).

in order to pass events from the specialized gen. → general purpose gen. LHEF
is used.

Generating LHEF Generator + general purpose generator events within Athena:

generate the parton level events in the LHEF format outside Athena (use
GENSER installations),

make the input events available for access within Athena,

run the general purpose generator set so that the ME-level events are read from
the LHEF files.

Example from the MC10 central production JobOptions (MC@NLO + Herwig):

from MC10JobOptions.McAtNloEvgenConfig import evgenConfig

dummy needed

evgenConfig.inputfilebase = ’mcatnlo’

try:

if runArgs.ecmEnergy == 7000.0:

evgenConfig.inputfilebase = ’group09.phys-gener.mcatnlo341.105200.ttbar_7TeV.TXT.v1’

4 / 17

Event Generation Schema

Q: Which generators can be used acc. to this schema?

A: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/MonteCarloWorkingGroup

5 / 17

1) Passing Generator Configuration to the Interface

Technicalities:

generator configuration is steered via Python (JobOption) files,

the JobOption commands are parsed by the generator interface (Athena; C++).

Examples of how to write the JobOptions follow in the Exercises section.

Getting DataSet Info from the JobOptions:

The fact that JobOptions specify the generator configuration (for non-LHEF
generators) makes them useful for extracting the info about the centrally
produced samples.

Example: the (in)famous QCD dijet samples 105009-1059017 conventionally
called Pythia J0 Sample,. . .Pythia J8 Sample.

The best way of really knowing what the contents of these samples are (I can
think of) is to look into the JobOption files.

For the MC10 production the JobOption files reside in
Generators/MC10JobOptions package, svn repo location is:
https://svnweb.cern.ch/trac/atlasoff/browser/Generators/MC10JobOptions/trunk/share/MC10.105009.J0 pythia jetjet.py

https://svnweb.cern.ch/trac/atlasoff/browser/Generators/MC10JobOptions/trunk/share/MC10.105010.J1 pythia jetjet.py

. . .

You should be able to do/follow the interpretation after the Pythia exercise
session.

6 / 17

Event Generation Schema

Q: Which generators can be used acc. to this schema?

A: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/MonteCarloWorkingGroup

7 / 17

2) - 3) Generator Interface - MCGenerator Code Interaction

Technicalities:

Generator interfaces operate within Athena and are written in C++ for all
generators (incl. the F77 ones).

Packages with the interface code are located in the Generators package;
https://svnweb.cern.ch/trac/atlasoff/browser/Generators .

There are many examples of JobOption files in the share dir.-s of
Generators/MC0XJobOptions packages; these can be used as templates on which
you base your JobOptions file; solid understanding of the interface code in not
necessary for generating events within Athena (but can be useful, especially for
more advanced use-cases).

GENSER repository:

generator interfaces provide links to the GENSER builds of the generator codes;

the code is located here:
[atlas14] /afs/cern.ch/sw/lcg/external/MCGenerators $ ls

Sherpa blackmax epos herwig++ hydjetpp mcfm photos++ professor rivet

acermc cascade evtgenlhc herwigpp isajet mctester photospp pyquen sherpa

agile charybdis hej hijing jimmy nlojet++ pomwig pythia6 stagen

alpgen charybdis2 hepmcanalysis hydjet lhapdf phojet powheg pythia8 starlight

baurmc distribution herwig hydjet++ mcatnlo photos powheg-box qcdloop tarFiles

DESY mirror: /afs/desy.de/group/alliance/mcg/public/.

From the user-side useful for e.g. running the LHEF generators (no Athena
interface providing the linking).

8 / 17

4) Event Generation Schema

Q: Which generators can be used acc. to this schema?

A: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/MonteCarloWorkingGroup

9 / 17

4) Event Generation Output

Internal Event Record differs from generator to generator;

one of the gen. interface’s functions is the output of the events to StoreGate in
the generic HepMC format;

HepMC provides 4-vectors and utils, rules for status-codes and utils to traverse
the event (GenVertex,GenParticle); you will be working with this format when
analyzing the output obtained by running MC generator within Athena (without
further processing).

Figure from the HepMC docu source of choice:
http://lcgapp.cern.ch/project/simu/HepMC/206/HepMC2 user manual.pdf

10 / 17

4) Event Generation Output Cont’d

Apart from the events in HepMC format further relevant output stems from the event
generation stage;

output from the generator (typically including header, info on included processes,
warnings, errors . . .),

output from the interface (typically including tune/parameter setup info,
warnings, errors . . .).

The output of the standard event generation run within Athena is dumped to a
file conventionally named Evgen.log.

Evgen.log files also contain the info on the generator-level Meta Data (e.g.
process x-section, more info in the next slide).

Evgen.log contains the transform exit status; N.B. if a transform doesn’t exit with
0 the output events are not stored for the grid jobs.

Py:Athena INFO leaving with code 0: "successful run"

/afs/cern.ch/atlas/software/releases/16.6.2/AtlasCore/16.6.2/InstallArea/share/bin/athena.py -b

runargs.Evgen.py EvgenJobTransforms/skeleton.Evgen.py Evgen_messageSvc_jobOptions.py - exit code 0.

The Evgen.log files are stored for all available centrally produced DataSets; we’ll
have a closer look at them in the Tutorial Sessions.

11 / 17

AMI Info [Hands-on]

What is the x-section of the ttbar sample with ID 105200?

Information is available via the ATLAS Metadata Interface .

AMI search utils can be used to find the event generation output files for the
sample;

to save some time let’s use the link below to access the information directly;

click on details link, located as shown in the snap below.

https://ami.in2p3.fr/AMI/servlet/net.hep.atlas.Database.Bookkeeping.AMI.Servlet.Command?Converter=

/AMIXmlToAMIProdHtml.xsl&Command=FormBrowseDatasetPerParameter

+-datasetNumber=105200+-dataType=EVNT+-version=e598

12 / 17

Event Generation Schema

Q: Which generators can be used acc. to this schema?

A: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/MonteCarloWorkingGroup

13 / 17

5)-6) Analysis and Further Processing

Analysis of the evgen-level outputs:

occasionally the generator-level events are also used for analysis (generator
validation, gen. level studies),

For the analysis it might be useful to add truth jets and MET info:

[lmijovic@lxplus247]/tmp/lmijovic% csc_addTruthJetMet_trf.py --help

Setting runOpts.help to True

JobTransform csc_addTruthJetMet version EvgenJobTransforms-00-06-81

Add TruthJet/TruthMet on evgen Based on csc_atlfast_trf.py

usage: csc_addTruthJetMet_trf.py [options] <inputevgenfile> <outputaodfile> [maxevents] <skipevents>

Friday: hands-on generator-level event analysis sessions.

Further Processing:

for the central production the output events from running the generator-level
JobTransforms are stored to disk from where further processing steps (adding
detector simulation) using them as inputs read them.

What you will typically encounter when looking into truth-level info in e.g. AODs
are not the generator level HepMC events, but its derivatives obtained after
further processing;

both the format and the contents of the events are affected by the processing;
https://twiki.cern.ch/twiki/bin/view/AtlasProtected/McEventCollection .

14 / 17

Generator-level Info About the Central Prod. Samples
[Hands-on]

Example use-case:

you are performing a SUSY search and you suspect ttbar production is a relevant
source of background.

Which DataSet(s) should you use for the backgrounds study?

Centrally produced DataSets docu at the AtlasProduction wiki pages:

https://twiki.cern.ch/twiki/bin/view/AtlasProtected/AtlasProductionGroup

wget http://www-f9.ijs.si/∼kersevan/Physics mc10 7TeV.xls

It is also a good idea to consult your colleagues from the SUSY group and visit
the MC pages of the group that has requested the samples;

⇒ Sample of choice: 105200.

15 / 17

Tutorials After the Coffee Break and on Friday

Thu: work on writing the jO files / generating events and interpreting the jOpts
of the central production jO.

Fri: Analysis Tutorial sessions.

16 / 17

Thank You

17 / 17

