

SPONSORED BY THE

Federal Ministry of Education and Research

Deutsche Forschungsgemeinschaft

SFB 676 – Projekt B2

Physics at the LHC

Christian Sander (Universität Hamburg)

HGF Monte Carlo School – Hamburg – 14th March 2011

Outline

UH

iii

Outline

UH

Physics at the LHC

- SM well established
- New physics expected at TeV scale (stabilizing VV cross section → Higgs, unification of gauge couplings → Supersymmetry)
- SM processes: many orders of magnitude larger cross sections than typical Higgs/BSM cross sections

→ Searches for Higgs/BSM signatures require a precise understanding of SM processes

Structure of the Proton

If the protons and neutrons in this picture were 10 cm across, then the quarks and electrons would be less than 0.1 mm in size and the entire atom would be about 10 km across.

LHC is *pp* collider

 \rightarrow High \sqrt{s} of *pp* collision

UH

- \rightarrow Large cross sections (strong interaction)
- → "Discovery machine"
- \rightarrow No precise knowledge of \sqrt{s} of hard process
- → Input for all calculations: **Structure of proton**

14th March 11

C. Sander - Physics at the LHC

ep Collisions

- Most energetic and precise measurements done at HERA
- Kinematics:
 - Photon virtuality: $\mathbf{Q}^2 = -\mathbf{q}^2$
 - Bjorken scaling: $x=-q^2/2P_pq$
 - Photon energy fraction: $\mathbf{y} = \mathbf{q}\mathbf{P}_{\mathbf{p}}/\mathbf{k}\mathbf{P}_{\mathbf{p}}$

Diff. cross section measurements \rightarrow structure function of proton

γ ,Z (neutral current) e + $p \rightarrow$ e + X

W^{\pm} (charged current) $e + p \rightarrow v + X$

14th March 11

C. Sander - Physics at the LHC

PDF Measurements

• E.g. neutral current:

$$\frac{d^2\sigma^{ep}}{dxdQ^2} \propto \frac{2\pi\alpha^2}{xQ^4} \begin{bmatrix} (\mathbf{1} + (\mathbf{1} - \mathbf{y})^2)\mathbf{F}_2 - \mathbf{y}^2\mathbf{F}_L \mp \mathbf{x}\mathbf{F}_3 \end{bmatrix}$$

Dominant contribution

• Quark-parton model:

$$F_2 \propto \sum_f \left(q_f(\textbf{x},\textbf{Q}^2) + \boldsymbol{\bar{q}}_f(\textbf{x},\textbf{Q}^2) \right)$$

- Parton distribution functions (PDFs): $q_f/\bar{q}_f(x, Q^2)$
 - Probability density to find quark of flavor f with a momentum fraction x
 - Bjorken scaling: If partons do not interact: q_f(x) and F₂(x)
 - PDF dependence on x not calculable in perturbative QCD

Combined Measurements

- Combination from H1 and ZEUS data provide most precise PDFs
- At low x: dominating gluon density (→ LHC)
- Dependence on $\mathbf{Q}^2 \rightarrow \mathbf{Scaling\ violation}$

Scaling Violation / DGLAP

- Quarks do interact via gluon exchange
- Interpretation of PDFs: probability density of partons with momentum fraction x, as resolved at Q²:

 $F_2(x) \rightarrow F_2(x,Q^2), q(x) \rightarrow q(x,Q^2)$

 Dependence on Q² described in perturbative QCD via Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations

 \rightarrow Quark and gluon densities coupled

From Hera to the LHC

Kinematics in pp collisions

 $E_1 \qquad E_2$

Center-of-mass energy: $s = 4 \cdot E_1 \cdot E_2$

2-parton interaction:

 $\boldsymbol{\hat{s}} = \boldsymbol{x}_1 \cdot \boldsymbol{x}_2 \cdot \boldsymbol{s} \geq \boldsymbol{\mathsf{M}}$

Energy scale M = Q

$$x_{1,2} = \frac{M}{\sqrt{s}} \cdot \exp(\pm y)$$

UH

iii

From Hera to the LHC

Kinematics in pp collisions

Center-of-mass energy: $s = 4 \cdot E_1 \cdot E_2$

2-parton interaction:

 $\boldsymbol{\hat{s}} = \boldsymbol{x}_1 \cdot \boldsymbol{x}_2 \cdot \boldsymbol{s} \geq \boldsymbol{\mathsf{M}}$

Energy scale M = Q

$$x_{1,2} = \frac{M}{\sqrt{s}} \cdot \text{exp}(\pm y)$$

UH

iii

Factorization

Main statement:

Cross sections can be calculated by a product of

- Parton distribution functions (PDFs)
- Perturbative XS of the hard process
- If needed: Description of final state via parton shower ...

At the LHC:

 $\sigma(\mathbf{pp} \rightarrow \mathbf{Y} + \mathbf{X}) = \sum_{q_i,q_j} \int d\mathsf{x}_1 \int d\mathsf{x}_2 \,\, q_i(\mathsf{x}_1,\mathsf{Q}^2) \otimes \mathsf{q}_j(\mathsf{x}_2,\mathsf{Q}^2) \otimes \hat{\sigma}_{\mathsf{q}_i\mathsf{q}_j \rightarrow \mathbf{Y}}(\mathsf{x}_1,\mathsf{x}_2,\mathsf{Q}^2)$

Also important for PDF measurements itself

Factorization is often only an approximation: soft gluon interaction between hadrons, interactions of initial and final states ...

Factorization

Main statement:

Cross sections can be calculated by a product of

- Parton distribution functions (PDFs)
- Perturbative XS of the hard process
- **If needed:** Description of final state via parton shower ...

At the LHC:

 $\sigma(\mathbf{pp} \rightarrow \mathbf{Y} + \mathbf{X}) = \sum_{q_i,q_j} \int d\mathsf{x}_1 \int d\mathsf{x}_2 \,\, q_i(\mathsf{x}_1,\mathsf{Q}^2) \otimes \mathsf{q}_j(\mathsf{x}_2,\mathsf{Q}^2) \otimes \hat{\sigma}_{\mathsf{q}_i\mathsf{q}_j \rightarrow \mathbf{Y}}(\mathsf{x}_1,\mathsf{x}_2,\mathsf{Q}^2)$

Also important for PDF measurements itself

Factorization is often only an approximation: soft gluon interaction between hadrons, interactions of initial and final states ...

$\textbf{14 TeV} \rightarrow \textbf{7 TeV}$

UHI

At fixed $\sqrt{\hat{s}}$ a smaller \sqrt{s} requires larger \mathbf{x}_1 and \mathbf{x}_2

Steeply falling PDFs of "sea" quarks and gluons \rightarrow **Decreasing cross section**

Example: 14 TeV \rightarrow 7 TeV (gluon-gluon processes) $\sqrt{\hat{s}} = 300 \text{ GeV}$

 \rightarrow Cross section drops by factor ~5

Data Taking

2009: Data taking at \sqrt{s} =900 GeV and 2.36 TeV Since 30th March 10: \sqrt{s} =7 TeV Peak Luminosity: 1.3×10³² cm⁻² s⁻¹ Delivere Plan for 2011: 6.4×10³² ... 2.2×10³³ Plan for Design: 10³⁴

Delivered int. Lumi at CMS: 47/pb Plan for 2011: 2.2/fb ... 7.6/fb

+ ~3 weeks of Heavy Ion (PbPb at √s=2.76 TeV/n; int. Lumi ~7/μb)

The Experiments

Ш

Outline

Introduction Performance of Detectors Rediscovery of the Standard Model Beyond the Standard Model Summary UH

Particle Identification at ATLAS

14th March 11

C. Sander - Physics at the LHC

Particle Identification at CMS

Main difference to ATLAS:

- All silicon tracker
- ECAL and HCAL mostly inside solenoid magnet (~4T)
- No toroidal magnet for muon bending

UH

C. Sander - Physics at the LHC

Detector Performance – Tracker

Measurement of strange particle mass resonances:

- Λ baryon candidate: Two tracks of opposite charge; assign lower p_{τ} to m_{π} ; secondary vertex
- Ξ baryon candidate: Λ candidate combined with 3rd negative secondary track; SV of Ξ separated from PV; points back to PV

Mass accuracy at the level $10^{-4} \rightarrow$ Very well aligned Si-strip and pixel tracker

CMS PAS QCD-10/007

Muons

Jet Algorithms

Calorimeter jet ↔ Particle jet / parton

• Jet algorithms should be:

Collinear safe, infrared safe, fast ...

Infrared

safety

- Challenges:
 - Thresholds and zero suppression
 - Noise, pileup, and underlying event
 - Response calibration
 - Out-of-cone showering

Sequential Clustering Algorithms

For each input object i calculate the "distance to the beam line" $d_{iB} = p_{T,i}^{2p}$ and the "distance" to the other particles j $d_{ij} = min \left(p_{T,i}^{2p}, p_{T,j}^{2p} \right) \cdot \frac{\Delta R_{i,j}^2}{D^2}$ "Cone size" parameter

If $\mathbf{d}_{iB} < \mathbf{d}_{ij}$ move object **i** to the list of final jets, else merge **i** and **j** Infrared and collinear safe for $\mathbf{p} = -1, 0, +1$

- p = +1 (k_T algorithm): no fixed cone
- p = 0 (Cambridge-Aachen algorithm): no fixed cone, well suited for subjet structure studies
- p = -1 (anti-k_T algorithm): almost fixed cone

kT jet Cone jet

Jet Calibration

- Factorization by residual corrections facilitates use of data driven corrections
 - L1: Pile-up and noise measured in zero-bias events
 - L2: Jet response vs. η relative to barrel using diJet balance
 - L3: Jet response vs. p_{T} found in barrel using γ/Z + jets, top etc.
- With current statistics: Usage of MC truth with residual corrections from data/MC comparison
- Allows data-driven corrections as they emerge to easily replace MC truth

MC Truth Calibration

Match genJets to reconstructed jets, with $\sqrt{\Delta \eta^2 + \Delta \phi^2} < 0.25$

- Mean of response distribution: $R(p_T^{true}) = \langle p_T^{reco} / p_T^{true} \rangle$
 - \rightarrow Fit analytic function
- **2** Mapping of recoJet p_T to genJet p_T : $\mathbf{p}_T^{true} \leftrightarrow \langle \mathbf{p}_T^{reco} \rangle$

C. Sander - Physics at the LHC

UH

<u>i i i</u>

Jet Calibration – Relative Response

• Use diJet balance **B** from central (barrel) jet and probe jet

• Least biased estimator R of relative response $\langle p_T^{probe} \rangle / \langle p_T^{barrel} \rangle$

$$\mathsf{R}(\eta^{\mathsf{probe}},\mathsf{p}_{\mathsf{T}}^{\mathsf{diJet}}) = rac{\mathbf{2} + \langle \mathsf{B}
angle}{\mathbf{2} - \langle \mathsf{B}
angle}$$

• Falling spectrum & finite jet resolution

 \rightarrow migration to higher p_{T} bins

 $\mathsf{B} = \frac{\mathsf{p}_{\mathsf{T}}^{\mathsf{probe}} - \mathsf{p}_{\mathsf{T}}^{\mathsf{barrel}}}{\mathsf{p}_{\mathsf{T}}^{\mathsf{diJet}}}$

 \rightarrow measured response is systematically biased to higher values

- \rightarrow binning in diJet $p_{\rm T}$ minimizes bias
- Residual corrections for MC vs. data difference needed

UH

14th March 11

CMS PAS JME-10/003

Jet Calibration – Absolute Response

Use γ +jet events for absolute jet energy response; two approaches:

- Transverse momentum balance
- Missing *E*_T projection fraction (MPF):
 - Only small dependence on jet algorithm
 - Calibration of total recoil → less dependence on further jet activity
 - Dominant uncertainties:
 - flavor difference
 - parton corrections
 - QCD bg
 - proton fragments
 - 2nd jet extrapolation

CMS PAS JME-10/010

C. Sander - Physics at the LHC

MET

- Missing transverse momentum is defined as vectorial momentum imbalance in the transverse plain (with magnitude MET)
- Three major algorithms to reconstruct MET at CMS
 - Calo MET: based on calorimeter energy deposits
 - Track corrected MET: Replacing calorimeter deposits from charged hadrons by matched tracks
 - Particle Flow MET: identify stable particles using all subdetectors prior to MET calculation (or jet clustering)

→ Careful noise cleaning of MET tails needed

14th March 11

MET – Type I and Type II

MET corrections:

- Type I: Replace calorimeter deposits clustered in jets by corrected jets; for diJets: introduces bias of MET || to jet bisector axis
- **Type II:** Additional correction from unclustered energy or jets below threshold; determined from MC or from data (e.g. $Z \rightarrow II$)

14th March 11

C. Sander - Physics at the LHC

Particle Flow

Particle Flow – Jets

- Cluster PF candidates in anti- k_{T} jets
- Reduced absolute scale dependence due to an extra cluster calibration applied during the PF algorithm
- Improvement of p_{T} resolution due to precise tracker measurements \rightarrow no improvement in the very forward region $\sqrt{s=7 \text{ TeV}}$ CMS Simulation

14th February 11

C. Sander - Jets & MET @ CMS

Particle Flow – MET

CMS PAS JME-10/004 & JME-10/005

14th March 11

 σ (Calibrated $\mu_{x,y}$) (GeV)

C. Sander - Physics at the LHC

UH

iii

Outline

UH

Charged Particle Multiplicity

C. Sander - Physics at the LHC

Underlying Event

- Underlying event (UE) = multiple particle interaction (MPI) + beam-beam remnants (BBR)
- New 7 TeV data essential for understanding of UE and MPI at high scales (relevant for SM precision measurements and searches)
- UE expected to increase with scale of leading parton (smaller impact angles) and √s (increasing parton densities at given scale)
- Tested models underestimate track multiplicity and $\varSigma p_{\rm T}$ at low leading jet $p_{\rm T}$

 \rightarrow MC generator tuning

CMS PAS QCD-10-005

C. Sander - Physics at the LHC

- J/ψ reconstruction in μ and e channel
- Total cross section for inclusive production in μ channel:

 $\mathsf{Br}(\mathsf{J}/\Psi o \mu^+\mu^-) \cdot \sigma(\mathsf{pp} o \mathsf{J}/\Psi + \mathsf{X}) = (\mathsf{289.1} \pm \mathsf{16.7}(\mathsf{stat}) \pm \mathsf{60.1}(\mathsf{syst})) \mathsf{ nb}$

- Unbinned ML fit to transverse decay length to **disentangle prompt** (direct or decay from heavier charmonium states) **and secondary production** (*B* hadron decays)
- Cross section for non-prompt production in μ channel:

 $Br(J/\Psi \rightarrow \mu^+\mu^-) \cdot \sigma(pp \rightarrow Y \rightarrow J/\Psi) = (56.1 \pm 5.5(stat) \pm 7.2(syst)) \text{ nb}$

CMS PAS BPH-10/002

14th March 11

J/ψ Production

Tevatron: J/ψ production cross section larger than predicted by color singlet (CS) processes (confirmed by LHC experiments)

Way out: Additional color octet (CO) processes \rightarrow "splitting out of unwanted color" via soft gluons

Onia – Y **Production**

- Y(1S), Y(2S) and Y(3S) identified and resolved
- Differential cross section measured and compared with theoretical predictions
 - \rightarrow Uncertainties large, but some tension between experimental measurement and different models

Electroweak Physics

C. Sander - Physics at the LHC

W⁺/W⁻ Charge Asymmetry

Different parton content in protons (up, down)

- Charge dependent production cross section
- → Lepton charge asymmetry as function of η
- → Constraints on pdfs expected with 10 pb⁻¹

Тор

The LHC is a top factory (already >6000 top evts at CMS/ATLAS) **Clear signature:** leptons, b-tags, MET **Properties:**

- Spin = 1/2, q = +2/3 e (?), m = 172.0±2.2 GeV
- Yukawa coupling $h_{top} \sim 1$ (big contributions to radiative corrections of Higgs mass)
- Short lifetime ($\tau \approx 5 \cdot 10^{-25}$ s); decay before hadronization; polarization of W^{\pm}

Top Physics

The Ridge

- Angular correlation in pp events at 7 TeV with high track multiplicity
 - 1 GeV < track p_{τ} < 3 GeV
 - *N*_{tracks} > 110
- Ratio R of signal (same event pairs) and bg (different event pairs)
- Jet peak and back-to-back structure visible

→ Structure at near side long range reassembles Bose-Einstein correlation observed in AuAu collisions at RHIC

JHEP 1009:091 (2010)

Heavy lons – "Jet Quenching"

- New diJet asymmetry observed (increasing with centrality)
- Not observed in pp collisions

• Possible interpretation:

Strong jet energy loss in hot dense medium

UH

CERN-PH-EP-2010-062

14th March 11

C. Sander - Physics at the LHC

WW / WZ / ZZ or Higgs Physics?

UH

Integrated Luminosity still small for cross section measurements

However, some exciting candidates!

 $\begin{array}{l} \mu_0^-(48.1422,\,-0.412532,\!-1.92555)\\ \mu_1^+(43.4421,\,0.204654,\,1.79493)\\ \mu_2^+(25.8769,\,-0.782084,\,0.774588)\\ \mu_3^-(19.5646,\,2.01112,\,-0.980597) \end{array}$

Invariant Masses

 $\mu_0 + \mu_1$: 92.15 GeV (total(Z) p_T 26.5 GeV, ϕ -3.03), $\mu_2 + \mu_3$: 92.24 GeV (total(Z) p_T 29.4 GeV, ϕ +.06), $\mu_0 + \mu_2$: 70.12 GeV (total p_T 27 GeV), $\mu_3 + \mu_1$: 83.1 GeV (total p_T 26.1 GeV).

Invariant Mass of 4µ: 201 GeV

CMS Experiment at LHC, CERN Data recorded: Fri Sep 24 02:29:58 2010 CEST Run/Event: 146511 / 504867308 SM expectation im 7/pb: 0.044(3) events prob(N \geq 1) \approx 4.2%

 $pp \rightarrow 4\mu + X$

14th March 11

C. Sander - Physics at the LHC

Standard Model Higgs

UH

iii

Higgs in 2011/12

UH L

14th March 11

C. Sander - Physics at the LHC

Outline

Introduction

Performance of Detectors

Rediscovery of the Standard Model

Beyond the Standard Model

Summary

14th March 11

C. Sander - Physics at the LHC

UH

DiJet Resonances

14th March 11

C. Sander - Physics at the LHC

Contact Interactions

- $\chi = \exp(|y_1 y_2|)$ flat for Rutherford scattering d*N*/dcos $\theta^* \propto 1/\sin^4(\theta^*/2)$; new physics expected at small χ
- Centrality ratio R_c of events with both leading jets in central ($|\eta| < 0.7$) and non central region (0.7 < $|\eta| < 1.3$); new physics expected to produce diJets more central than QCD

 \rightarrow No significant deviation from QCD prediction Best fit for R_c : Λ = 2.9 TeV (no trend seen at CMS)

C. Sander - Physics at the LHC

W'Searches

- Extra heavy gauge bosons predicted by left-right symmetric models or supersymmetric Grand Unified Theories
- Signature: lepton (here: e) and similar MET $0.4 < E_T^{electron}/MET < 1.5$ in opposite direction ($\Delta \phi > 2.5$)

\rightarrow Better limits on $M_{w'}$ than Tevatron experiments

14th March 11

C. Sander - Physics at the LHC

UH

<u>i i i</u>

Leptoquarks

UHI j

LO

٥٥٥

e S

- LQ carry lepton and baryon numbers
- Fractionally charged
- Typically constrained to one lepton/quark generation
- LHC: dominant pair production via gg fusion or $q\overline{q}$ annihilation
- Signature: 2 OSSF leptons + 2 jets with high $M_{\mu\mu}$ and S_{T}

(p_{T} sum of two leading jets and muons)

Leptoquarks

No excess of events observed

→ Exclusion limits on $\beta^2 \times \sigma$ (β : Branching ratio of LQ in corresponding lepton, e.g. second generation LQ → $q\mu$)

(similar limits for first generation LQ)

CMS PAS EXO-10-005 & 007

14th March 11

C. Sander - Physics at the LHC

Heavy Ionizing Particles

N

 Search for heavy particles with large electromagnetic charge (q >> e) like Qballs, magnetic monopoles, micro BH remnants, dyons ...

• Signature:

- Large fraction of high dE/dx hits in tracker $f_{HT}^{0.0}$
- Small clusters in Ecal layers w₁ / w₂

Data driven background estimation:

- Assume no correlation of $f_{\rm HT}$, w_1 and w_2
- Bg dominated: !f&!w, f&!w and !f&w
 → probabilities for bg to pass f or w

$$\mathbf{p_f} = rac{\mathbf{N_{f\&!w}}}{\mathbf{N_{!w}}}$$
, $(\mathbf{f} \leftrightarrow \mathbf{w})$

• Estimate: $N_{f\&w} = N_{tot} \cdot p_f \cdot p_w$

arXiv:1102.0459v2 [hep-ex]

95% CL XS limit:

<i>m</i> [GeV]	q = 6e	q = 10e	q = 17e
200	1.4	1.2	2.1
500	1.2	1.2	1.6
1000	2.2	1.2	1.5

95% CL XS limit (pair production):

<i>m</i> [GeV]	q = 6e	q = 10e	q = 17e
200	11.5	5.9	9.1
500	7.2	4.3	5.3
1000	9.3	3.4	4.3

Heavy Charged Stable Particles

- (Meta-) stable gluinos or squarks can from neutral bound states (*R*-hadrons) → not visible in muon detectors
- Search based on high d*E*/d*x* tracker hits: most probable value of d*E*/d*x* estimated by harmonic mean $(1 1)^{1/k}$

$${f I}_{f h} = \left(rac{1}{{f N}}\sum_{f i} ({f d}{f E}/{f d}{f x})^{f k}_{f i}
ight) \qquad ext{with} \quad f k = -2$$

• Relation between $I_{\rm h}$, mass *m* and momentum *p*

14th March 11

C. Sander - Physics at the LHC

Stopped Gluinos

- Probability for *R*-hadron to stop in Hcal: 1% ... 20% (model dependent) \rightarrow decay: $\tilde{\mathbf{g}} \rightarrow \tilde{\chi}_{\mathbf{0}} + \mathbf{g}$
- Signature: "jets" in triggerable beam gaps
- Backgrounds: beam halo, cosmics, and HCAL noise
- No significant excess \rightarrow limits on $\sigma \times Br$ as function of lifetime τ of gluino

Leptonic SUSY Search

- Cascades with sleptons \rightarrow more than one lepton, e.g. $\tilde{\mathbf{q}} \rightarrow \mathbf{q} \tilde{\chi}_2^0 \rightarrow \mathbf{q} \mathbf{l} \tilde{\mathbf{l}} \rightarrow \mathbf{q} \mathbf{l} \tilde{\mathbf{l}} \tilde{\chi}_1^0$
- SUSY cascades with charginos \rightarrow single leptons, e.g. $\tilde{\mathbf{q}} \rightarrow \mathbf{q} \tilde{\chi}_1^{\pm} \rightarrow \mathbf{q} l \nu \tilde{\chi}_1^{\mathbf{0}}$
- Signature:
 - exactly one isolated lepton
 - ≥3 jets
 - MET > 125 GeV
 - M_{T} (lepton+MET) >115 GeV

arXiv:1102.2357v2 [hep-ex]

- $M_{\text{eff}}(\text{lepton} + 3 \text{ jets} + \text{MET}) > 500 \text{ GeV}$
- QCD background from data; other bgs scaled MC simulation (control regions)
- Observed: 2 events

Limits

• Expected: ~4 events

C. Sander - Physics at the LHC

Hadronic SUSY Search with α_{τ}

$$\alpha_{\mathsf{T}} = \frac{\mathsf{E}_{\mathsf{T}}^{2\mathsf{n}\mathsf{d}}}{\mathsf{M}_{\mathsf{T}}} = \frac{\mathsf{E}_{\mathsf{T}}^{2\mathsf{n}\mathsf{d}}}{\sqrt{2\mathsf{p}_{\mathsf{T}}^{1\mathsf{s}\mathsf{t}}\mathsf{p}_{\mathsf{T}}^{2\mathsf{n}\mathsf{d}}(1-\cos\phi_{12})}}$$

- Perfectly measured diJet events $\alpha_{\tau} = 0.5$
- Mismeasurements of p_{T} : $\alpha_{T} < 0.5$
- Selection: 3^{rd} jet $p_{T} < 50 \text{ GeV } \& \alpha_{T} > 0.55$

• $\alpha_{T} > 0.5$

- QCD: jets below threshold
- Events with genuine MET (Top, W, Z)
- Possible extension on N_{jet} > 2 by forming two pseudo jets

→ Already with small statistics the LHC experiments are probing new regions of the SUSY parameter space

CMS PAS SUS-10/003

Black Holes

- UHU H
- Models with large flat extra spatial dimensions (e.g. ADD models): Black hole production at the LHC (~geometrical cross section: $\sigma = \pi \cdot R_s^2$)
- Hawking radiation: democratic evaporation (dominantly: quarks and gluons)
- Signature: High multiplicity of objects ($p_T > 50 \text{ GeV}$), high $S_T = \Sigma_i p_{T,i}$
- Dominant Bg: QCD; S_τ shape independent on object multiplicity

14th March 11

C. Sander - Physics at the LHC

Black Holes

No excess at large S_{T} observed \rightarrow Limits:

- Model dependent limits on minimal BH mass ~3.5 and ~4.5 TeV
- Model independent limits on cross section for New Physics from counting experiments with $S > S_{\tau}^{min}$

14th March 11

C. Sander - Physics at the LHC

UH

<u>i i i</u>

Outline

Introduction Performance of Detectors Rediscovery of the Standard Model Beyond the Standard Model Summary UΗ

Summary

UHI H

- LHC physics program has started successfully
- All detectors commissioned and operating with high efficiencies
- The Standard Model has been rediscovered → 2011/12 data set will allow precision measurements and has potential to discover (or exclude) the SM Higgs boson over largest part of allowed mass region
- Due to higher center of mass energy (compared to Tevatron) the LHC experiments are exploring new parameter regions of BSM models with the first pb⁻¹

Very exciting times ahead of us ...

Backup

3

14th March 11

C. Sander - Physics at the LHC

UН

CMS Detector

SILICON TRACKER Pixels (100 x 150 μm²) ~1m² ~66M channels Microstrips (80-180μm) ~200m² ~9.6M channels

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76k scintillating PbWO₄ crystals

PRESHOWER

FORWARD

~2k channels

CALORIMETER Steel + quartz fibres

Silicon strips ~16m² ~137k channels

STEEL RETURN YOKE ~13000 tonnes

SUPERCONDUCTING SOLENOID Niobium-titanium coil carrying ~18000 A

Total weight Overall diameter Overall length Magnetic field : 14000 tonnes : 15.0 m : 28.7 m : 3.8 T

HADRON CALORIMETER (HCAL)

Brass + plastic scintillator ~7k channels **MUON CHAMBERS**

Barrel: 250 Drift Tube & 480 Resistive Plate Chambers Endcaps: 473 Cathode Strip & 432 Resistive Plate Chambers

CMS Calorimeter

- ECal: Lead-Tungstate PbWo⁴ crystals
 - Coverage: $|\eta| < 3$
 - High granularity $\Delta \eta \times \Delta \phi = 0.0175 \times 0.0175$ (~80k crystals)
 - ~26 X₀
- HCal: Copper (brass) / scintillator sampling calorimeter
 - Coverage: $|\eta| < 5$
 - Granularity (barrel) $\Delta \eta \times \Delta \phi = 0.087 \times 0.087$ (~4k cells)
 - ~7-11 λ (+ 4 λ from HO in barrel)
- Calorimeter towers:
 - One HCal cell and 5×5 crystals
 - Tower thresholds between of 0.5 GeV and 0.85 GeV
 - 82 towers in η and 72/36/18 towers in ϕ

UH

C. Sander - Physics at the LHC

CMS HCal

- Granularity decreases with increasing $|\eta|$
- Coverage up to $|\eta| < 5$
- Most parts inside of magnet except OuterBarell (OB)
 from CMS Physics TDR Vol. II

Tower	η range		Detector	Size		Depth
index	Low	High		η	ϕ	segments
1	0.000	0.087	HB, HO	0.087	5°	HB=1, HO=1
2	0.087	0.174	HB, HO	0.087	5°	HB=1, HO=1
3	0.174	0.261	HB, HO	0.087	5°	HB=1, HO=1
4	0.261	0.348	HB, HO	0.087	5°	HB=1, HO=1
5	0.348	0.435	HB, HO	0.087	5°	HB=1, HO=1
6	0.435	0.522	HB, HO	0.087	5°	HB=1, HO=1
7	0.522	0.609	HB, HO	0.087	5°	HB=1, HO=1
8	0.609	0.696	HB, HO	0.087	5°	HB=1, HO=1
9	0.696	0.783	HB, HO	0.087	5°	HB=1, HO=1
10	0.783	0.870	HB, HO	0.087	5°	HB=1, HO=1
11	0.879	0.957	HB, HO	0.087	5°	HB=1, HO=1
12	0.957	1.044	HB, HO	0.087	5°	HB=1, HO=1
13	1.044	1.131	HB, HO	0.087	5°	HB=1, HO=1
14	1.131	1.218	HB, HO	0.087	5°	HB=1, HO=1
15	1.218	1.305	HB, HO	0.087	5°	HB=2, HO=1
16	1.305	1.392	HB, HE	0.087	5°	HB=2, HE=1
17	1.392	1.479	HE	0.087	5°	HE=1
18	1.479	1.566	HE	0.087	5°	HE=2
19	1.566	1.653	HE	0.087	5°	HE=2
20	1.653	1.740	HE	0.087	5°	HE=2
21	1.740	1.830	HE	0.090	10°	HE=2
22	1.830	1.930	HE	0.100	10°	HE=2
23	1.930	2.043	HE	0.113	10°	HE=2
24	2.043	2.172	HE	0.129	10°	HE=2
25	2.172	2.322	HE	0.150	10°	HE=2
26	2.322	2.500	HE	0.178	10°	HE=2
27	2.500	2.650	HE	0.150	10°	HE=3
*28	2.650	3.000	HE	0.350	10°	HE=3
29	2.853	2.964	HF	0.111	10°	HF=2
30	2.964	3.139	HF	0.175	10°	HF=2
31	3.139	3.314	HF	0.175	10°	HF=2
32	3.314	3.489	HF	0.175	10°	HF=2
33	3.489	3.664	HF	0.175	10°	HF=2
34	3.664	3.839	HF	0.175	10°	HF=2
35	3.839	4.013	HF	0.174	10°	HF=2
36	4.013	4.191	HF	0.178	10°	HF=2
37	4.191	4.363	HF	0.172	10°	HF=2
38	4.363	4.538	HF	0.175	10°	HF=2
39	4.538	4.716	HF	0.178	10°	HF=2
40	4.716	4.889	HF	0.173	20°	HF=2
41	4.889	5.191	HF	0.302	20°	HF=2

14th March 11

C. Sander - Physics at the LHC

Inclusive Jet Production

- Inclusive jet p_{T} spectra for all three jet approaches used in CMS (Calo, JPT, PF)
- Systematic uncertainties dominated by luminosity (~11%) and absolute jet energy scale (JES) uncertainty (~20% to ~80% depending on jet approach and p_{τ}); minor contributions from relative JES and p_{τ} resolution
- For particle flow jets the distributions can be extended down to 18 GeV !!!

All results in good agreement with NLO* theory

24th August 10

C. Sander - Recent Results from CMS

b Jets Production

- Test of implemented *b*-tagging tools (here: high purity version of the SV Tagger)
 - Purity of *b*-tagged sample extracted from fit to mass of the SV with templates
 - *b*-tagging efficiency from MC, but data driven uncertainty (~20%)
 - Mistag rate from negative tails of the *b*-tag distributions
- Ratio of *b*-incl. to jet-incl. cross section cancels out common systematic uncertainties

Agreement with MC@NLO (CTEQ6M) but discrepancies in p_{T} and y shapes

24th August 10

C. Sander - Recent Results from CMS

