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Modern usage of Monte Carlo event generators
Two ways of using MCs today:

to generate distributions that look sufficiently close to
data to allow for detector calibration etc.
−→ there, no real theory input is needed!

to extrapolate from a background to a signal region
−→ there, you better rely on underlying theory!
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Goal of the lectures
In these lectures, I aim to convince you that event generators

are “proper” theory tools, based on clearly defined
physical paradigms and ideas; (which you may find in textbooks)

are only successful in consistently describing data in a
meaningful way if their theory inputs are physically

sound;

can be analysed and divided into aspects where we fully
understand every approximation (matrix elements, parton
showers, merging thereof), and into others, where we rely
on heavy modelling (hadronization, underlying event);

that the latter must be tuned, whereas the former should
not need too much tuning.
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Topics of the lectures
1 Lecture 1: The Monte Carlo Principle

2 Lecture 2: Parton level event generation

3 Lecture 3: Dressing the Partons

4 Lecture 4: Modelling beyond Perturbation Theory &

Improving the showers

Thanks to

My fellow MC authors, especially S.Gieseke, K.Hamilton, L.Lonnblad, F.Maltoni, M.Mangano,
P.Richardson, M.Seymour, T.Sjostrand, B.Webber.

the other Sherpas: J.Archibald, T.Gleisberg, S.Höche, S.Schumann, F.Siegert, M.Schönherr, and J.Winter.

F. Krauss IPPP

Introduction to Event Generators



MC techniques Quadratures Monte Carlo Simulation Summary

Menu of lecture 1
Prelude: Selecting from a distribution

Standard textbook numerical integration (quadratures)

Monte Carlo integration

A basic simulation example
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Prelude: Selecting from a distribution

The problem

A typical Monte Carlo/simulation problem:
Distribution of “usual” random numbers #:

“flat” in [0, 1].

But: Want random numbers x ∈ [xmin, xmax],
distributed according to (probability) density f (x).
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The exact solution
The first method applies if both the integral of the density
f (x) and its inverse are known (i.e. practically never).

To see how it works realise that the
diff. probability P(x ∈ [x ′, x ′ + dx ′]) = f (x ′)dx ′.

Therefore: x given by
x
∫

xmin

dx ′f (x ′) = #
xmax
∫

xmin

dx ′f (x ′).

Since everything known:
x = F−1 [F (xmin) + # (F (xmax)− F (xmin))].
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The work-around solution: “Hit-or-miss”
(Solution, if exact case does not work.)

Builds on “over-estimator” g(x) (G and G−1 known):
g(x) > f (x) ∀x ∈ [xmin, xmax].

Select an x according to g

(with exact algorithm);

Accept with probability f (x)/g(x)
(with another random number);

Obvious fall-back choice for g(x):

g(x) = Max[xmin, xmax]{f (x)}.
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Quadratures: standard numerical integration

Reminder: Basic techniques
Typical problem: Need to evaluate an integral, cannot do
it in closed form.

Example: nonlinear pendulum.
Can calculate period T from E.o.M. θ̈ = −g/l sin θ:

T =

√

8l

g

θmax
∫

0

dθ√
cos θ − cos θmax

Elliptic integral, no closed solution known
=⇒ entering (again) the realm of numerical solutions.
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Numerical integration: Newton-Cotes method

Nomenclature now: Want to evaluate I
(a,b)
f =

b
∫

a

dxf (x).

Basic idea: Divide interval [a, b] in N subintervals of size
∆x = (b − a)/N and approximate

I
(a,b)
f =

b
∫

a

dxf (x)≈
N−1
∑

i=0

f (xi)∆x =
N−1
∑

i=0

f (a + i∆x)∆x ,

i.e. replace integration by sum over rectangular panels.

Obvious issue: What is the error? How does it scale
parametrically with “step-size” (or, better, number of
function calls)? Answer: It is linear in ∆x .
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Improving on the error: Trapezoid, Simpson and all
that

A careful error estimate suggests that by replacing
rectangles with trapezoids the error can be reduced to
quadratic in ∆x .

This boils down to including a term [f (b)− f (a)]/2:

I
(a,b)
f ≈

N−1
∑

i=1

f (xi)∆x + ∆x
2
[f (a) + f (b)]

Repeating the error-reducing exercise replaces the
trapezoids by parabola: Simpson rule. In so doing, the
error decreases to (∆x)4.
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Numerical integration: Results

Consider test function f (x) =
√
4− x2 in [0, 2].

(I
(0,2)
f

=
2
∫

0
dx

√

4 − x2 = π).

F. Krauss IPPP

Introduction to Event Generators



MC techniques Quadratures Monte Carlo Simulation Summary

Convergence of numerical integration: Summary
First observation: Numerical integrations only yield
estimators of the integral, with an estimated accuracy
given by the error.

(Proviso: the function is sufficiently well behaved.)

Scaling behaviour of the error translates into scaling
behaviour for the number of function calls necessary to
achieve a certain precision.

In one dimension/per dimension, therefore, the
convergence scales like

Trapezium rule: ≃ 1/N2

Simpson’s rule ≃ 1/N4

with the number N of function calls.
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Monte Carlo integration

The underlying idea: Determination of π
Use random number generator!
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Determination of π
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Error estimate in Monte Carlo integration
MC integration: Estimate integral by N probes

I
(a,b)
f =

b
∫

a

dxf (x)

−→ 〈I (a,b)f 〉 = b−a
N

N
∑

i=1

f (xi) = 〈f 〉a,b,

where xi homogeneously distributed in [a, b]

Basic idea for error estimate: statistical sample
=⇒ use standard deviation as error estimate

〈E (a,b)
f (N)〉 = σ =

[

〈f 2〉a,b−〈f 〉2
a,b

N

]1/2

.

Independent of the number of integration dimensions!
=⇒ Method of choice for high-dimensional integrals.
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Determination of π: Errors

F. Krauss IPPP

Introduction to Event Generators



MC techniques Quadratures Monte Carlo Simulation Summary

Improve convergence: Importance sampling
Want to minimise number of function calls.

(They are potentially CPU-expensive.)

=⇒ Need to improve convergence of MC integration.

First basic idea: Samples in regions, where f largest
( =⇒ corresponds to a Jacobian transformation of integral.)

Algorithm:

Assume a function g(x) similar to f (x).
Obviously f (x)/g(x) is smooth =⇒ 〈E (f /g)〉 is small.
Must sample according to dx g(x) rather than dx :
g(x) plays role of probability distribution; we know
already how to deal with this!

Works, if f (x) is well-known. Hard to generalise.
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Importance sampling: Example results

Consider f (x) = cos πx
2

and g(x) = 1− x2:
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Improve convergence: Stratified sampling
Want to minimise number of function calls.

(They are potentially CPU-expensive.)

=⇒ Need to improve convergence of MC integration.

Basic idea here: Decompose integral in M sub-integrals

〈I (f )〉 =
M
∑

j=1

〈Ij(f )〉, 〈E (f )〉2 =
M
∑

j=1

〈Ej(f )〉2

Then: Overall variance smallest, if “equally distributed”.
(=⇒ Sample, where the fluctuations are.)

Algorithm:

Divide interval in bins (variable bin-size or weight);
adjust such that variance identical in all bins.
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Stratified sampling: Example results

Consider f (x) = cos πx
2

and g(x) = 1− x2:

〈I 〉 = 0.637± 0.147/
√
N
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Example for stratified sampling: VEGAS
Good for Vegas:
Singularity “parallel” to
integration axes

Bad for Vegas:
Singularity forms ridge
along integration axes
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Improve convergence: Multichannel sampling
Want to minimise number of function calls.

(They are potentially CPU-expensive.)

=⇒ Need to improve convergence of MC integration.

Basic idea: Best of both worlds:
Hybrid between importance and
stratified sampling.

Have “bins” – weight αi – of
“eigenfunctions” – gi(x):
=⇒ g(~x) =

∑N

i=1 αigi(~x).

In particle physics, this is the method of choice for parton
level event generation!

F. Krauss IPPP

Introduction to Event Generators



MC techniques Quadratures Monte Carlo Simulation Summary

Basic simulation paradigm

An example from thermodynamics
Consider two-dimensional Ising model:
H = −J

∑

〈ij〉

sisj (Spins fixed on 2-D lattice with nearest neighbour interactions.)

Traditional model to understand (spontaneous)
magnetisation & phase transitions.

To evaluate an observable O, sum over all micro
states φ{i}, given by the individual spins. (Similar to path integral in QFT.)

〈O〉 =
∫

Dφ{i} Tr

{

O(φ{i}) exp
[

−H(φ{i})

kBT

]}

Typical problem in such calculations (integrations!):
Phase space too large =⇒ need to sample.
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Metropolis-Algorithm
Metropolis algorithm simulates the canonical ensemble,
summing/integrating over micro-states with MC method.

Necessary ingredient: Interactions among spins in
probabilistic language (will come back to us.)

Algorithm will look like: Go over the spins, check whether
they flip (compare Pflip with random number), repeat to
equilibrate.

To calculate Pflip: Use energy of the two micro-states
(before and after flip) and Boltzmann factors.

While running, evaluate observables directly and take
thermal average (average over many steps).
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Why Metropolis is correct: Detailed balance
Consider one spin flip, connecting micro-states 1 and 2.

Rate of transitions given by the transition probabilities W
If E1 > E2 then W1→2 = 1 and W2→1 = exp

(

−E1−E2

kBT

)

In thermal equilibrium, both transitions equally often:
P2W2→1 = P1W1→2

This takes into account that the respective states are
occupied according to their Boltzmann factors.

(Pi ∼ exp(−Ei/kBT ))

In principle, all systems in thermal equilibrium can be
studied with Metropolis - just need to write transition
probabilities in accordance with detailed balance, as above
=⇒ general simulation strategy in thermodynamics.
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Some example results
Fix temperature, use a 10× 10 lattice
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Summary of lecture 1
Discussed some basic numerical techniques.

Introduced Monte Carlo integration as the method of
choice for high-dimensional integration space
(like phase space in multi-particle production).

Introduced some standard improvement strategies to the
convergence of Monte Carlo integration.

Discussed connections between simulations and Monte
Carlo integration with the example of the Ising model.
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