Introduction to Event Generators

Frank Krauss

Institute for Particle Physics Phenomenology Durham University

DESY, 14.-18.3.2011

IPPP

.⊒ →

- ∢ 🗗 ▶

Introduction to Event Generators

F Krauss

MC techniques	Quadratures	Monte Carlo	

Modern usage of Monte Carlo event generators

Two ways of using MCs today:

- to generate distributions that look sufficiently close to data to allow for detector calibration etc.
 - \longrightarrow there, no real theory input is needed!
- to extrapolate from a background to a signal region
 → there, you better rely on underlying theory!

Goal of the lectures

In these lectures, I aim to convince you that event generators

- are "proper" theory tools, based on clearly defined physical paradigms and ideas; (which you may find in textbooks)
- are only successful in consistently describing data in a meaningful way if their theory inputs are physically sound;
- can be analysed and divided into aspects where we fully understand every approximation (matrix elements, parton showers, merging thereof), and into others, where we rely on heavy modelling (hadronization, underlying event);
- that the latter must be tuned, whereas the former should not need too much tuning.

(ロ) (四) (三) (三)

MC te	echniques	Quadratures	Monte Carlo		
	Topics	of the lectures			
	 Lect 	ture 1: The Mon	te Carlo Princip	le	
	2 Lect	ture 2: Parton lev	vel event genera	ntion	
	3 Lect	ture 3: <i>Dressing</i>	the Partons		
	Lect	ture 4: <i>Modelling</i> Imp	beyond Perturn proving the show		

Thanks to

My fellow MC authors, especially S.Gieseke, K.Hamilton, L.Lonnblad, F.Maltoni, M.Mangano, P.Richardson, M.Seymour, T.Sjostrand, B.Webber.

the other Sherpas: J.Archibald, T.Gleisberg, S.Höche, S.Schumann, F.Siegert, M.Schönherr, and J.Winter.

<ロ> <四> <四> <日> <日> <日</p>

2

IPPP

F. Krauss

Introduction to Event Generators

MC techniques	Quadratures	Monte Carlo	

Menu of lecture 1

- Prelude: Selecting from a distribution
- Standard textbook numerical integration (quadratures)
- Monte Carlo integration
- A basic simulation example

F Krauss

Prelude: Selecting from a distribution

The problem

- A typical Monte Carlo/simulation problem: Distribution of "usual" random numbers #: "flat" in [0, 1].
- But: Want random numbers x ∈ [x_{min}, x_{max}], distributed according to (probability) density f(x).

MC techniques	Quadratures	Monte Carlo	

The exact solution

- The first method applies if both the integral of the density f(x) and its inverse are known (i.e. practically never).
- To see how it works realise that the diff. probability P(x ∈ [x', x' + dx']) = f(x')dx'.
- Therefore: x given by

$$\int_{\min}^{\infty} \mathrm{d}x' f(x') = \# \int_{x_{\min}}^{x_{\max}} \mathrm{d}x' f(x').$$

Since everything known:

 $X_{\rm m}$

$$x = F^{-1} \left[F(x_{\min}) + \# \left(F(x_{\max}) - F(x_{\min}) \right) \right]$$

MC te	chniques	Quadratures	Monte Carlo		
	The wo	ork-around solu	ıtion: "Hit-o	r-miss"	
		(S	olution, if exac	t case does not wor	k.)
	• Bui		$\begin{array}{l} \text{mator" } g(x) \ (G \\ x) \ \forall x \in [x_{\min}, \end{array}$	and G^{-1} known): x_{\max}].	
		ect an x according the exact algorithm		A 1 1	
		ept with probabili h another randon		9=fmax 4(4)	
		vious fall-back cho	- ()	× _{nin} × _{max}	
	g($(x) = Max_{[x_{\min}, x_{\max}]}$	x_{x} { $t(x)$ }		
E K				 (四) < 個) < 일) < 일) 	≣ ୬९୯ ।
F. Kra		<u> </u>			IPPP
Introd	uction to Event	Generators			

Quadratures: standard numerical integration

Reminder: Basic techniques

- Typical problem: Need to evaluate an integral, cannot do it in closed form.
- Example: nonlinear pendulum. Can calculate period T from E.o.M. $\ddot{\theta} = -g/I \sin \theta$:

$$T = \sqrt{\frac{8I}{g}} \int_{0}^{\theta_{\max}} \frac{\mathrm{d}\theta}{\sqrt{\cos\theta - \cos\theta_{\max}}}$$

Elliptic integral, no closed solution known \implies entering (again) the realm of numerical solutions.

(ロ) (四) (三) (三)

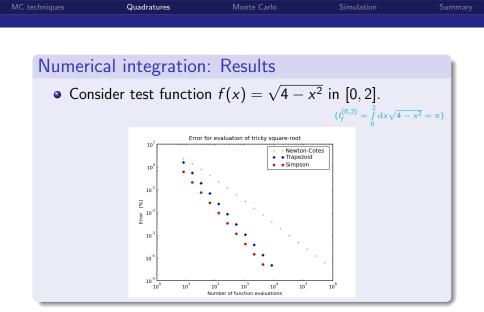
MC to		Quadratures	Monte Carlo		
l	Nume	erical integration	: Newton-Co	otes method	
	• N	Iomenclature now: \	Nant to evalua	te $I_f^{(a,b)} = \int_a^b \mathrm{d}x f(a,b)$	(x).
		Basic idea: Divide int $\Delta x = (b-a)/N$ and	l approximate		
		$I_f^{(a,b)} = \int\limits_a^b \mathrm{d}x f(x)$	$\approx \sum_{i=0}^{N-1} f(x_i) \Delta x$	$=\sum_{i=0}^{N-1}f(a+i\Delta)$	<)Δx,
	i.e	e. replace integratio	n by sum over	rectangular pane	ls.
	p	Dovious issue: What parametrically with " unction calls)? Answ	step-size" (or,	better, number o	ſ

MC techniques	Quadratures	Monte Carlo	

Improving on the error: Trapezoid, Simpson and all that

- A careful error estimate suggests that by replacing rectangles with trapezoids the error can be reduced to quadratic in Δx.
- This boils down to including a term [f(b) f(a)]/2: $I_f^{(a,b)} \approx \sum_{i=1}^{N-1} f(x_i) \Delta x + \frac{\Delta x}{2} [f(a) + f(b)]$
- Repeating the error-reducing exercise replaces the trapezoids by parabola: Simpson rule. In so doing, the error decreases to (Δx)⁴.

F Krauss



IPPP

F. Krauss

MC techniques	Quadratures	Monte Carlo	

Convergence of numerical integration: Summary

• First observation: Numerical integrations only yield estimators of the integral, with an estimated accuracy given by the error.

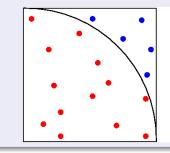
(Proviso: the function is sufficiently well behaved.)

- Scaling behaviour of the error translates into scaling behaviour for the number of function calls necessary to achieve a certain precision.
- In one dimension/per dimension, therefore, the convergence scales like
 - Trapezium rule: $\simeq 1/N^2$
 - Simpson's rule $\simeq 1/N^4$

with the number N of function calls.

Monte Carlo integration

- The underlying idea: Determination of π
 - Use random number generator!

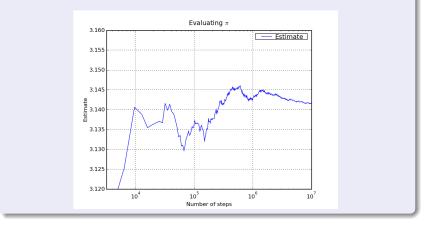


Throw random points (x,y), with x, y in [0,1] For hits: $(x^2+y^2) < r^2 = 1$

< 17 ▶

3

MC techniques	Quadratures	Monte Carlo	



▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

IPPP

Introduction to Event Generators

MC techniques	Quadratures	Monte Carlo		
Error es	stimate in Mo	nte Carlo inte	egration	
MC	integration: Est	<mark>imate</mark> integral b	y N probes	
	$I_f^{(a,b)}$	$= \int_{a}^{b} \mathrm{d}x f(x)$)	
		$\rangle = \frac{b-a}{N} \sum_{i=1}^{N} t$		
whe	re x _i homogeneo	ously distributed	in [<i>a</i> , <i>b</i>]	
	ic idea for error e use standard de		•	
	$\langle E_{f}^{(a,b)}(N) \rangle$	$= \sigma = \left[\frac{\langle}{-}\right]$	$\frac{f^2\rangle_{a,b}-\langle f\rangle_{a,b}^2}{N}\bigg]^{1/2}.$	
	•	•	ration dimensions!	!
	Mathod of chai	co tor high dimo	ncional integrals	

 \implies Method of choice for high-dimensional integrals.

2

・ロト ・回ト ・ヨト ・ヨト

MC techniques	Quadratures	Monte Carlo	

Determination of π : Errors

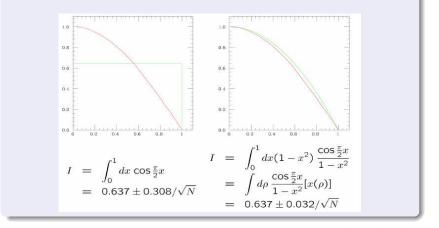


F. Krauss

Introduction to Event Generators

MC te		Quadratures	Monte Carlo		
	Improv	e convergence:	: Importance	sampling	
	Wa	nt to minimise nu	umber of functio	on calls.	
				(They are potentially CPU-exp	pensive.)
	\Longrightarrow	Need to improve	e convergence o	f MC integration.	
	 First 	st basic idea: Sam	nples in regions,	where f largest	
			(\implies corresponds to	o a Jacobian transformation of i	ntegral.)
	Alg	orithm:			
	Q	Assume a functio	on $g(x)$ similar to	f(x).	
			- ()	$\Rightarrow \langle E(f/g) \rangle$ is sm	all.
		Must sample acc	,		
			•	, ribution; we know	
		already how to d			
		2		o gonoralico	
	• •••	rks, if $f(x)$ is wel	I-KNOWN. Haru (to generalise.	

• Consider $f(x) = \cos \frac{\pi x}{2}$ and $g(x) = 1 - x^2$:



IPPP

F. Krauss

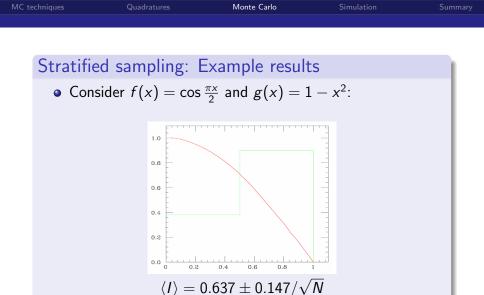
Introduction to Event Generators

MC techniques		Quadratures	Monte Carlo		
	Improve	convergence:	Stratified s	ampling	
	 Want 	to minimise num	nber of functi	on calls.	
				(They are potentially CPU-exp	pensive.)
	\Longrightarrow N	Veed to improve (convergence of	of MC integration.	
	 Basic 		mpose integra	al in <i>M</i> sub-integra	als
		$\langle I(f) \rangle = \sum_{j=1}^{M} \langle I_j(f) \rangle$	\rangle , $\langle E(f) \rangle^2$	$=\sum_{j=1}^{M}\langle E_{j}(f) angle ^{2}$	
	• Then:	: Overall variance	smallest, if	"equally distribute	d".
				\implies Sample, where the fluctuation	ons are.)

- Algorithm:
 - Divide interval in bins (variable bin-size or weight);
 - adjust such that variance identical in all bins.

F. Krauss

• • • • • • • • • • • • •



IPPP

Introduction to Event Generators

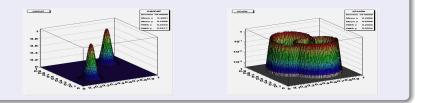
E. Krauss

MC techniques	Quadratures	Monte Carlo	

Example for stratified sampling: VEGAS

- Good for Vegas: Singularity "parallel" to integration axes
- Bad for Vegas: Singularity forms ridge along integration axes

<ロト <回ト < 回ト < 回ト



MC techniques	s Quadratures	Monte Carlo		
Imp	prove convergence:	Multichann	el sampling	
٩	Want to minimise nu	mber of functi	on calls.	
	\Longrightarrow Need to improve	e convergence d	(They are potentially CPU-exp of MC integration.	· · · · ·
٩	 Basic idea: Best of b Hybrid between impo stratified sampling. 		1(x)	82
۲	Have "bins" – weight "eigenfunctions" – g_i $\implies g(\vec{x}) = \sum_{i=1}^{N}$	$t_i(x)$:		- 84
۹	In particle physics, th		od of choice for pa	irton

level event generation!

F. Krauss

2

∢ ≣⇒

・ロト ・回ト ・ヨト

Basic simulation paradigm

 $\mathcal{H} = -J\sum s_i s_j$

An example from thermodynamics

• Consider two-dimensional Ising model:

(Spins fixed on 2-D lattice with nearest neighbour interactions.)

(a)

- Traditional model to understand (spontaneous) magnetisation & phase transitions.
- To evaluate an observable \mathcal{O} , sum over all micro states $\phi_{\{i\}}$, given by the individual spins. (Similar to path integral in QFT.) $\langle \mathcal{O} \rangle = \int \mathcal{D}\phi_{\{i\}} \operatorname{Tr} \left\{ \mathcal{O}(\phi_{\{i\}}) \exp \left[-\frac{\mathcal{H}(\phi_{\{i\}})}{k_B T} \right] \right\}$
- Typical problem in such calculations (integrations!):
 Phase space too large ⇒ need to sample.

MC techniques	Quadratures	Monte Carlo	Simulation	

Metropolis-Algorithm

- Metropolis algorithm simulates the canonical ensemble, summing/integrating over micro-states with MC method.
- Necessary ingredient: Interactions among spins in probabilistic language (will come back to us.)
- Algorithm will look like: Go over the spins, check whether they flip (compare $\mathcal{P}_{\mathrm{flip}}$ with random number), repeat to equilibrate.
- To calculate $\mathcal{P}_{\rm flip}$: Use energy of the two micro-states (before and after flip) and Boltzmann factors.
- While running, evaluate observables directly and take thermal average (average over many steps).

< ロ > < 同 > < 回 > < 回 >

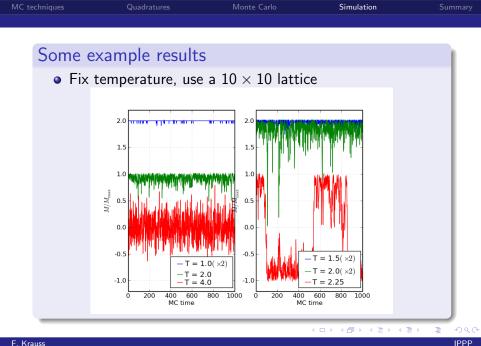
Why Metropolis is correct: Detailed balance

- Consider one spin flip, connecting micro-states 1 and 2.
- $\bullet\,$ Rate of transitions given by the transition probabilities ${\cal W}$
- If $E_1 > E_2$ then $\mathcal{W}_{1 \to 2} = 1$ and $\mathcal{W}_{2 \to 1} = \exp\left(-\frac{E_1 E_2}{k_B T}\right)$
- In thermal equilibrium, both transitions equally often: $\mathcal{P}_2\mathcal{W}_{2\to1}=\mathcal{P}_1\mathcal{W}_{1\to2}$

This takes into account that the respective states are occupied according to their Boltzmann factors.

 In principle, all systems in thermal equilibrium can be studied with Metropolis - just need to write transition probabilities in accordance with detailed balance, as above
 ⇒ general simulation strategy in thermodynamics.

 $^{(\}mathcal{P}_i \sim \exp(-E_i/k_BT))$



Introduction to Event Generators

MC techniques 0	Quadratures	Monte Carlo	Simulation	Summary

Summary of lecture 1

- Discussed some basic numerical techniques.
- Introduced Monte Carlo integration as the method of choice for high-dimensional integration space (like phase space in multi-particle production).
- Introduced some standard improvement strategies to the convergence of Monte Carlo integration.
- Discussed connections between simulations and Monte Carlo integration with the example of the Ising model.