Orientation	Matrix elements	Survey of tools	ME Limitations	Detour: NLO

Introduction to Event Generators

Frank Krauss

Institute for Particle Physics Phenomenology Durham University

DESY, 14.-18.3.2011

3 N 3

IPPP

- ∢ 🗗 ▶

F. Krauss Introduction to Event Generators

Orientation	Matrix elements	Survey of tools	ME Limitations	Detour: NLO
Topi	cs of the lectur	es		
 L 	ecture 1: The Mo	onte Carlo Princ	tiple	
2 L	ecture 2: Parton	level event gene	eration	
3 L	ecture 3: Dressing	g the Partons		
4	ecture 4: <i>Modellin</i> Ir	ng beyond Perti mproving the sh	urbation Theory & owers	

Thanks to

- My fellow MC authors, especially S.Gieseke, K.Hamilton, L.Lonnblad, F.Maltoni, M.Mangano, P.Richardson, M.Seymour, T.Sjostrand, B.Webber.
- the other Sherpas: J.Archibald, T.Gleisberg, S.Höche, S.Schumann, F.Siegert, M.Schönherr, and J.Winter.

<ロ> <四> <四> <日> <日> <日</p>

IPPP

Introduction to Event Generators

Orientation	Matrix elements	Survey of tools	ME Limitations	Detour: NLO

Menu of lecture 2

- Prelude: Orientation
- Stating the problem: Factorial growth
- Efficient matrix element calculation and phase space evaluation at leading order (tree-level)
- Survey of leading order tools
- Next-to leading order

Prelude: Orientation

Event generator paradigm

Divide event into stages, separated by different scales.

• Signal/background:

Exact matrix elements.

• QCD-Bremsstrahlung:

Parton showers (also in initial state).

• Multiple interactions:

Beyond factorisation: Modelling.

• Hadronisation:

Non-perturbative QCD: Modelling.

F. Krauss

Introduction to Event Generators

Orientation	Matrix elements	Survey of tools	ME Limitations	Detour: NLO

Simulation of the hard bits (signals & backgrounds)

• Simple example: $t \to bW^+ \to b\bar{l}\nu_l$:

$$|\mathcal{M}|^2 = \frac{1}{2} \left(\frac{8\pi\alpha}{\sin^2\theta_W}\right)^2 \frac{p_t \cdot p_\nu p_b \cdot p_l}{(p_W^2 - M_W^2)^2 + \Gamma_W^2 M_W^2}$$

• Phase space integration (5-dim):

$$\Gamma = \frac{1}{2m_t} \frac{1}{128\pi^3} \int \mathrm{d}p_W^2 \frac{\mathrm{d}^2 \Omega_W}{4\pi} \frac{\mathrm{d}^2 \Omega}{4\pi} \left(1 - \frac{p_W^2}{m_t^2}\right) |\mathcal{M}|^2$$

- 5 random numbers \implies four-momenta \implies "events".
- Apply smearing and/or arbitrary cuts.
- Simply histogram any quantity of interest no new calculation for each observable

Orientation

Availability of exact calculations (hadron colliders)

- Fixed order matrix elements ("parton level") are exact to a given perturbative order. (and often quite a pain!)
- Important to understand limitations: Only tree-level fully automated, 1-loop-level ongoing.

F. Krauss

Introduction to Event Generators

Parton level simulations

Stating the problem(s)

- Multi-particle final states for signals & backgrounds.
- Need to evaluate $d\sigma_N$:

$$\int_{\text{suts}} \left[\prod_{i=1}^{N} \frac{\mathrm{d}^{3} q_{i}}{(2\pi)^{3} 2 E_{i}} \right] \delta^{4} \left(p_{1} + p_{2} - \sum_{i} q_{i} \right) \left| \mathcal{M}_{p_{1} p_{2} \to N} \right|^{2}$$

- Problem 1: Factorial growth of number of amplitudes.
- Problem 2: Complicated phase-space structure.
- Solutions: Numerical methods.

F Krauss

æ

э

・ロト ・日下 ・ 日下

Orientation	Matrix elements	Survey of tools	ME Limitations	Detour: NLO

12

Basic ideas of efficient ME calculation

Need to evaluate
$$|\mathcal{M}|^2 = \left|\sum_i \mathcal{M}_i\right|$$

- Obvious: Traditional textbook methods (squaring, completeness relations, traces) fail
 - \implies result in proliferation of terms $(\mathcal{M}_i \mathcal{M}_i^*)$
 - \implies Better: Amplitudes are complex numbers,
 - \implies add them before squaring!
- Remember: spinors, gamma matrices have explicit form could be evaluated numerically (brute force)
 But: Rough method, lack of elegance, CPU-expensive

F Krauss

Orientation	Matrix elements	Survey of tools	ME Limitations	Detour: NLO

Helicity method

- Introduce basic helicity spinors (needs to "gauge"-vectors)
- Write everything as spinor products, e.g. $\bar{u}(p_1, h_1)u(p_2, h_2) = \text{complex numbers.}$

Completeness rel'n: $(\not p + m) \implies \frac{1}{2} \sum_{i} \left[\left(1 + \frac{m^2}{p^2} \right) \bar{u}(p, h) u(p, h) + \left(1 - \frac{m^2}{p^2} \right) \bar{v}(p, h) v(p, h) \right]$

- There are other genuine expressions ...
- Translate Feynman diagrams into "helicity amplitudes": complex-valued functions of momenta & helicities.
- Spin-correlations etc. nearly come for free.

F Krauss

▲ □ ► ▲ □ ► ▲

Or		Matrix elements	Survey of tools	ME Limitations	Detour: NLO
	Tami	ng the factoria	l growth		
	Tann	ng the factoria	il growth		
	● li	n the helicity metl	hod		
		 Reusing pieces Factoring out:	Calculate only Reduce numbe	y once! er of multiplications!	
	h	mplemented as a-	posteriori man	ipulations of ampli	tudes.
		e^+ γ, Z e^+	γ, Z $\mu^ \mu^+$ e^+	e^+ e^+ e^+	e^{-} μ^{-} μ^{+} e^{+}
	• E E	Better method: Re Best candidate so	ecursion relation far: Off-shell i	ons (recycling built recursions	in).

(Dyson-Schwinger, Berends-Giele etc.)

・ロト ・四ト ・ヨト ・ヨト

2

Colour-dressing: Fighting factorial growth in colour

• In principle: sampling over colours improves situation.

(But still, e.g. naively $\simeq (n-1)!$ permutations/colour-ordering for n external gluons).

Improved scheme: colour dressing.

F.Maltoni, K.Paul, T.Stelzer & S.Willenbrock Phys. Rev. D67 (2003) 014026

Works very well with Berends-Giele recursions:

Final	BG		BCF		CSW	
State	CO	CD	CO	CD	CO	CD
2g	0.24	0.28	0.28	0.33	0.31	0.26
3g	0.45	0.48	0.42	0.51	0.57	0.55
4g	1.20	1.04	0.84	1.32	1.63	1.75
5g	3.78	2.69	2.59	7.26	5.95	5.96
6g	14.2	7.19	11.9	59.1	27.8	30.6
7g	58.5	23.7	73.6	646	146	195
8g	276	82.1	597	8690	919	1890
9g	1450	270	5900	127000	6310	29700
10g	7960	864	64000	-	48900	-

C.Duhr, S.Hoche & F.Maltoni, JHEP 0608 (2006) 062

Time [s] for the evaluation of 10^4 phase space points, sampled over helicities & colour.

Introduction to Event Generators

IPPP

Orientation	Matrix elements	Survey of tools	ME Limitations	Detour: NLO

Efficient phase space integration

("Amateurs study strategy, professionals study logistics")

- Democratic, process-blind integration methods:
 - Rambo/Mambo: Flat & isotropic

R.Kleiss, W.J.Stirling & S.D.Ellis, Comput. Phys. Commun. 40 (1986) 359;

• HAAG/Sarge: Follows QCD antenna pattern

A.van Hameren & C.G.Papadopoulos, Eur. Phys. J. C 25 (2002) 563.

(日) (同) (三) (三)

- Multi-channeling: Each Feynman diagram related to a phase space mapping (= "channel"), optimise their relative weights.
 R.Kleiss & R.Pittau, Comput. Phys. Commun. 83 (1994) 141.
- Main problem: practical only up to $\mathcal{O}(10k)$ channels.
- Some improvement by building phase space mappings recursively: More channels feasible, efficiency drops a bit.

Ori	entation	Matrix elements	Survey of tools	ME Limitations	Detour: NLO
		C 1 1			
	Monte	e Carlo integra	tion: Unweig	hting efficiency	′ I
	• W	ant to generate e	vents "as in nat	ture".	
	• Ba	asic idea: Use hit-	or-miss method	l;	
		• Generate \vec{x} with	integration met	hod	

• compare actual $f(\vec{x})$ with maximal value during sampling \implies "Unweighted events".

• Comments:

- unweighting efficiency, $w_{eff} = \langle f(\vec{x}_j) / f_{max} \rangle$ = number of trials for each event.
- Good measure for integration performance.
- Expect $\log_{10} w_{\rm eff} \approx 3-5$ for good integration of multi-particle final states at tree-level.
- Maybe acceptable to use $f_{\max, eff} = K f_{\max}$ with K < 1. Problem: what to do with events where $f(\vec{x}_j)/f_{\max, eff} > 1$? Answer: Add $\inf[f(\vec{x}_j)/f_{\max, eff}] = k$ events and perform hit-or-miss on $f(\vec{x}_j)/f_{\max, eff} - k$.

F. Krauss

(日) (同) (三) (三)

Orient		Matrix ele	ements	Survey of tools		1E Limitations	Detour: NLO							
	Best an	swer	at the	moment:	Соміх	(personal	bias)							
					T.Gleisberg &	S.Hoeche, JHEP 081	L2 (2008) 039							
	Colo	our-dre	ssed Be	rends-Giele a	amplitude	• Colour-dressed Berends-Giele amplitudes in the SM.								

- Fully recursive phase space generation.
- Example results (cross sections):

		$_{\rm gg} ightarrow$	ng		Cro	oss section [pb]		
		n		8	9	10	11	12	
		\sqrt{s} [G	ieV]	1500	2000	2500	3500	5000	
		Соміх	(0.755(3)	0.305(2)	0.101(7)	0.057(5)	0.019(2)	
		Malto	ni (2002)	0.70(4)	0.30(2)	0.097(6)			
		Alpge	N .	0.719(19)					
[σ [μb]				N	umber of jet	ts		
	$b\bar{b} + QCD$ jets 0		0	1	2	3	4	5	6
Ī	Соміх 470.8(5)		8.83(2)	1.826(8)	0.459(2)	0.1500(8)	0.0544(6)	0.023(2)	
	ALPGEN 470.6(6)		8.83(1)	1.822(9)	0.459(2)	0.150(2)	0.053(1)	0.0215(8)	
	AMEGIC++	-	470.3(4)	8.84(2)	1.817(6)				
			· · · · · · · · · · · · · · · · · · ·						

IPPP

Orientation	Matrix elements	Survey of tools	
-------------	-----------------	-----------------	--

Best answer at the moment: COMIX (personal bias)

T.Gleisberg & S.Hoeche, JHEP 0812 (2008) 039

- Colour-dressed Berends-Giele amplitudes in the SM.
- Fully recursive phase space generation.
- Example results (phase space performance):

Survey of existing parton-level tools

Comparison of tree-level tools

	Models	$2 \rightarrow n$	Ampl.	Integ.	public?	lang.
ALPGEN	SM	<i>n</i> = 8	rec.	Multi	yes	Fortran
AMEGIC++	SM,MSSM,ADD	<i>n</i> = 6	hel.	Multi	yes	C++
Соміх	SM	n = 8	rec.	Multi	yes	C++
СомрНер	SM,MSSM	<i>n</i> = 4	trace	1Channel	yes	C
HELAC	SM	n = 8	rec.	Multi	yes	Fortran
MADEVENT	SM,MSSM,UED	<i>n</i> = 6	hel.	Multi	yes	Fortran
WHIZARD	SM,MSSM,LH	<i>n</i> = 8	rec.	Multi	yes	O'Caml

▲口 > ▲圖 > ▲臣 > ▲臣 > ― 臣 - のへで

IPPP

F. Krauss

Introduction to Event Generators

Limitations of parton level simulation

Factorial growth

... persists due to the number of colour configurations

(e.g. (n-1)! permutations for *n* external gluons).

- Solution: Sampling over colours, but correlations with phase space
 - \implies Best recipe not (yet) found.
- New scheme for colour: colour dressing

(C.Duhr, S.Hoche and F.Maltoni, JHEP 0608 (2006) 062)

Orientation	Matrix elements	Survey of tools	ME Limitations	Detour: NLO

Efficient phase space integration

- Main problem: Adaptive multi-channel sampling translates "Feynman diagrams" into integration channels
 hence subject to growth.
- But it is practical only for 1000-10000 channels.
- Therefore: Need better sampling procedures \implies open question with little activity.

(Private suspicion: Lack of glamour)

General

- Fixed order parton level (LO, NLO, ...) implies fixed multiplicity
- No control over potentially large logs (appear when two partons come close to each other).
- Parton level is parton level is parton level ...
 experimental definitions rely on observable hadrons.

Therefore: Need hadron level event generators!

A short detour to NLO calculations

Nomenclature (example: $\gamma^* \rightarrow$ hadrons)

- In general: $N^n LO \leftrightarrow \mathcal{O}(\alpha_s^n)$
- But: only for inclusive quantities

(e.g.: total xsecs like $\gamma^* \rightarrow$ hadrons).

Counter-example: thrust distribution

- In general, distributions are HO.
- Distinguish real & virtual emissions: Real emissions → mainly distributions, virtual emissions → mainly normalisation.

イロン 不通 と イヨン イ

E. Krauss

Ori		Matrix elements	Survey of tools	ME Limitations	Detour: NLO
			1 1	1.1	
	Anato	omy: Virtual a	nd real corre	ctions	
		Z!X I			
				$\langle O(n) \rangle$	
			NLO correction	ns: $\mathcal{O}(\alpha_s)$	
	NLU :	~ [~+2 ~ ~ +	Virtual correc	tions = extra	loops

Real corrections = extra legs

• UV-divergences in virtual graphs \rightarrow renormalisation

 But also: IR-divergences in real & virtual contributions Must cancel each other, non-trivial to see: N vs. N + 1 particle FS, divergence in PS vs. loop

F Krauss

Orientation	Matrix elements	Survey of tools	ME Limitations	Detour: NLO	
MC	calculations at	NLO QCD			
•	Calculate two sepa $\sigma_{NLO} = \int\limits_{m} \mathrm{d}\sigma_B + \int\limits_{m}$	frate, divergent $\int_{R+1} \mathrm{d}\sigma_R + \int_m \mathrm{d}\sigma_V$	integrals		
•	Born level d σ_B , rea	al emission in da	σ_R , virtual loop in	$d\sigma_V.$	
٩	Divergent structure	es due to soft/c	ollinear particles.		

 $\begin{array}{l} \text{Consider massless particles only:} \\ p^2 = (q+k)^2 = 2qk = 2E_{q}\omega_k(1-\cos\theta_{qk}) \\ \rightarrow 0 \text{ for } E_q, \ \omega_k \rightarrow 0 \ (\text{soft}) \\ \rightarrow 0 \text{ for } \theta_{qk} \rightarrow 0 \ (\text{collinear}) \end{array}$

(日) (同) (三) (三)

 Combine before numerical integration to cancel divergences (KLN theorem guarantees cancellation).

F. Krauss

Orientation	Matrix elements	Survey of tools	ME Limitations	Detour: NLO

Illustrative 1-dim example

- $|\mathcal{M}_{m+1}^{R}|^{2} = \frac{1}{x}R(x)$, where x=gluon energy or similar.
- $|\mathcal{M}_m^V|^2 = \frac{1}{\epsilon}V$, regularised in $d = 4 2\epsilon$ dimensions.
- Cross section in *d* dimensions with jet measure F^{J} : $\sigma = \int_{0}^{1} \frac{dx}{x^{1+\epsilon}} R(x) F_{1}^{J}(x) + \frac{1}{\epsilon} V F_{0}^{J}$
- Infrared safety of jet measure: F^J₁(0) = F^J₀
 ⇒ "A soft/collinear parton has no effect." (Tricky issue - without it, no reliable NLO calculation!)
- KLN theorem: R(0) = V.

Orientation	Matrix elements	Survey of tools	ME Limitations	Detour: NLO

Phase space slicing in 1-dim example

W.T.Giele and E.W.N.Glover, Phys. Rev. D 46 (1992) 1980.

・ロト ・回ト ・ ヨト ・

• Introduce arbitrary cutoff $\delta \ll 1$:

$$\begin{split} \sigma &= \int_{0}^{\delta} \frac{\mathrm{d}x}{x^{1+\epsilon}} R(x) F_{1}^{J}(x) + \frac{1}{\epsilon} V F_{0}^{J} + \int_{\delta}^{1} \frac{\mathrm{d}x}{x^{1+\epsilon}} R(x) F_{1}^{J}(x) \\ &\approx \int_{0}^{\delta} \frac{\mathrm{d}x}{x^{1+\epsilon}} V F_{0}^{J} + \frac{1}{\epsilon} V F_{0}^{J} + \int_{\delta}^{1} \frac{\mathrm{d}x}{x} R(x) F_{1}^{J}(x) \\ &= \log(\delta) V F_{0}^{J} + \int_{\delta}^{1} \frac{\mathrm{d}x}{x} R(x) F_{1}^{J}(x) \end{split}$$

Two separate finite integrals - both numerically large
 ⇒ error blows up (trial and error for stability)

Orientation	Matrix elements	Survey of tools	ME Limitations	Detour: NLO

Subtraction method in 1-dim example

S.Catani and M.H.Seymour, Nucl. Phys. B 485 (1997) 291

• • • • • • • •

Rewrite

$$\begin{split} \sigma &= \int_{0}^{1} \frac{\mathrm{d}x}{x^{1+\epsilon}} R(x) F_{1}^{J}(x) - \int_{0}^{1} \frac{\mathrm{d}x}{x^{1+\epsilon}} V F_{0}^{J} + \int_{0}^{1} \frac{\mathrm{d}x}{x^{1+\epsilon}} V F_{0}^{J} + \frac{1}{\epsilon} V F_{0}^{J} \\ &= \int_{0}^{1} \frac{\mathrm{d}x}{x^{1+\epsilon}} \left(R(x) F_{1}^{J}(x) - V F_{0}^{J} \right) + \mathcal{O}(1) V F_{0}^{J} \,. \end{split}$$

- Two separate finite integrals, with no large numbers to be added/subtracted.
- Subtraction terms are universal (analytical bit can be calculated once and for all).

Orient		Matrix elements	Survey of tools	ME Limitations	Detour: NLO
	Subtrac	ction in pract	cice		
	Rec	onsider $2 \rightarrow m$	cross section at	t NLO accuracy:	
	da		$^{m)}(\Phi_B^{(m)})$		
		$+\mathrm{d}\Phi_B^{(m)}\left[\mathcal{V}^{(m)}($	$\Phi_B^{(m)}) + \mathcal{B}^{(m)}(\Phi_B^{(m)})$	$) \otimes \int \mathrm{d}\Phi^{(1)}_{R B} S^{(1)}(\Phi)$	$\mathcal{O}_{R B}^{(1)}$
		$+\mathrm{d}\Phi_R^{(m+1)}\left[\mathcal{R}^{(r)}\right]$	$^{(m+1)}(\Phi_R^{(m+1)})-\mathcal{B}^{(m+1)}$	$^{(m)}(\Phi^{(m)}_B)\otimes S^{(1)}(\Phi^{(m)}_B)$	$\left[\begin{array}{c} 1 \\ 2 \\ B \end{array} \right] $
	 Tric 	k (as before): a	add & subtract	a term:	
			(-	$ o B\otimes S$ in integral and diff	erential form)
	• All • dim	singularities in . s	S ⁽¹⁾ , analytical	ly integrable in	D
				(allow cancellation of p	oles in $\mathcal{V}^{(m)}$)
	Eco	nomical: unive	rsal S ⁽¹⁾		
		(possible, since	IR singularities universal & p	rocess-independent - see exte	nal legs only)
F. Kra	uss				IPPP

Introduction to Event Generators

Automated real subtraction algorithms

- Remaining major nuisance in NLO calculations: real contributions & subtraction ⇒ has been "solved", i.e. automated.
- In principle: simple ("only" tree-level) & general (process-independent subtraction schemes).
- A problem that begs for automation.
- Status by now:
 - Various implementations documented in different stages and public availability, nearly all building on Catani-Seymour subtraction.
 - Les-Houches-type agreement on interface from LO+subtraction codes with loop providers.

T. Binoth et al., Comput. Phys. Commun. 181 (2010) 1612.

Parton level tools: Loop level

Specific solutions

- So far only process-specific codes publicly available, e.g.:
 - NLOJET++ (jets only),
 - VBFNLO (VBF-type processes),
 - and MCFM (the interesting rest)

Common feature: Essentially $2 \rightarrow 3$ SM processes.

- Traditional bottleneck: virtual contributions → solved(?) keywords: OPP-method, generalised unitarity
- Recent results (V + 3, 4 jets, $t\bar{t} + 2$ jets, ...)

R.K.Ellis, K.Melnikov and G.Zanderighi, JHEP **0904** (2009) 077; C. F. Berger *et al.*, Phys. Rev. **D80** (2009) 074036, **D82** (2010) 074002, arXiv:1009.2338; G. Bevilacqua *et al.*, Nucl. Phys. Proc. Suppl. **205-206** (2010) 211.

(日) (同) (三) (三)

F Krauss

Orientation	Matrix elements	Survey of tools	ME Limitations	Detour: NLO

Summary of lecture 2

- A first level of simulation: parton level.
- Brief review of state-of-the-art there.
- Discussed automated generation of matrix elements and their phase space integration.
- Many tools available for tree-level multi-leg.
- Going to loop-level in an automated way just started now.
- Discussed some intricacies of NLO calculations.